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Message from the Chairs

Welcome to the Eighth IEEE Statistical Signal and Array Processing (SSAP) Workshop. Corfu, in Greek,
means apex and thus sounds most appropriate as a choice to host the biannual SSAP’96 summit of the
Signal Processing Society. We look forward to an exciting and memorable meeting. The workshop venue
is the Corfu Hilton in the heart of Corfu, featuring beaches amid cliffs and pines, and the atmosphere to
promote the exchange of technical ideas while enjoying the Greco-Ionean ambiance.

Statistical signal and array processing continues to be the backbone of many real-world engineering
applications, and consistent with previous meetings, we expect SSAP’96 to continue the tradition of
excellence in the technical quality of presentations on state-of-the-art research. The international character
of the workshop keeps growing, and this year’s meeting, being the first one to move away from North
America, is well attended by European participants. As with previous SSAP meetings, we have
introduced some changes in the organization and the emphasis of the meeting. Correspondence with
authors was primarily via e-mail, and for publicity and notifications we relied heavily on our regularly
updated home page (http://watt.seas.virginia.edu/~spirit/ssap96/). Thanks to external support, we
were able to offer bargain basement registration fees ($550 for regular and $450 for student attendees).

We received 270 summaries from 45 countries— a record number of submissions for SSAP. Each
submission was scored by three reviewers, and in order to maintain the workshop’s atmosphere we
accepted only 139 papers which we expect to be of high quality. Our apologies to authors whose fine
submissions we could not accommodate, and our sincere thanks to reviewer experts, mostly drawn from
the SSAP Technical Committee, for their help with excellent and timely reviews. Signal Processing for
Communications and Array Signal Processing were well represented in the number of submissions (and
thus in the number of accepted papers). Applications, detection-estimation, non-Gaussian, non-stationary,
and nonlinear formed other well-defined clusters, and all are represented in the ten poster sessions and
five outstanding plenary talks. The center of focus for this year’s research theme is SSAP for
Communications.

Our warm thanks go to the volunteers of the international program committee, the European and
Austral-Asian liaisons, the publication, publicity, and local arrangement chairs. The informative and
creative home page prepared by Guotong Zhou contributed significantly to the workshop (its format is
now being used as a template by other workshops). Maria Rangoussi’s efforts in Greece are also greatly
appreciated (she bridged the transatlantic distance with the organizers in the US). We finally wish to
acknowledge support from the U.S. Army Research Office, the U.S. Office of Naval Research, the Greek
General Secretariat for Research and Technology, and the Greek companies Intracom and Alpha.

We hope that your stay in Corfu will not only be technically enriching but will also give you the
opportunity to meet new fellow researchers, renew old acquaintances, and to enjoy the Greek sea and
sun. We look forward to meeting you in Corfu.

Georgios B. Giannakis and Ananthram Swami
Co-organizers and Co-Chairs
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CALL FOR PAPERS

This workshop is the eighth in a series of biannual meetings
sponsored by the IEEE Signal Processing Society. Following
the successful scheme of previous meetings, the workshop
will feature keynote addresses by leading researchers in the
area, and poster sessions consisting of both invited as well
as contributed papers. Participation will be limited.

Authors are invited to submit contributions in the areas of,
but not limited to :

e Power spectrum analysis

o Higher-order spectra in signal processing
e Detection and estimation theory

¢ Sensor array processing

o Performance analysis

o Nonlinear and chaotic signals and systems

o Non-stationary processes: Time-frequency and time-
scale representations; evolutionary spectra

e Cyclo-stationary signal analysis
e Signal processing for communications
¢ Computational and implementation issues

¢ Applications in all areas

Prospective authors should submit four copies of a
hundred word abstract and a two to four page extended
summary to G.B. Giannakis; the summary should include
affiliations, addresses, tel/fax numbers and e-mail addresses,
and keywords identifying one of the above topics. '

Important Dates:

Submission of summary
Notification of acceptance
Camera-ready paper

December 1, 1995
February 1, 1996
March 15, 1996

e-mail: ssap96@spirit.ee.virginia.edu

Home Page: http://watt.seas.virginia.edu/"spirit/ssap96

Co-sponsored by: ~ The U.S. Army Research Office and The U.S. Office of Naval Research
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Detecting Regularity in Minefields and Chaotic Signals using the Empty Boxes
Test

Douglas E. Lake
Office of Naval Research, Code 313
800 N. Quincy St.
Arlington, VA 22217
laked@onrhq.onr.navy.mil

Abstract

A simple, flexible, and robust procedure to detect regu-
larity in point processes versus the alternative of random-
ness (i.e., a poisson point process) is the empty boxes test
(EBT). The EBT can be extended to a multivariate statis-
tical test in several ways including an implementation of
a skeptical likelihood test (SLT). These approaches have
previously been used to detect the regularity of minefields,
a two-dimensional point process, where the alternative is
termed complete spatial randomness (CSR). In this paper,
these methods are applied to the problem of detecting reg-
ularity in chaotic signals such as pseudo-random number
generators.

1. INTRODUCTION

Detecting minefields in the presence of clutter is an im-
portant challenge for the Navy. Minefields have point pat-
terns that tend to exhibit regularity such as equal-spacing
and collinearity that provide potentially valuable discrim-
inants against natural occuring clutter which tends to ex-
hibit complete spatial randomness (CSR). These tendencies
arise because of a variety of compelling factors including
strategic doctrine, safety, tactical and economic efficiency,
and perhaps most intriguing the human element. In [4] and
[5], several simple procedures were introduced to detect
regularity in minefields and other point processes gener-
ated by humans (e.g., lottery numbers). Figure 1 shows
an example of a minefield that is not so apparent with the
addition of clutter points.

Another important problem where regularity is being de-
tected as an alternative to randomness is the identification
of chaotic signals. Chaos theory is being used to develop
low probability of intercept (LPI) and spread spectrum
communication signals where traditional detection meth-
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Figure 1. Examples of a minefield with 50 mines
and 50 additional random clutter points

ods would fail. In these cases, the EBT and its variants
are alternative approaches to detection worth considering.
A particular interesting example to illustrate this claim is
a pseudo-random number generator (which is actually a
deterministic, chaotic process) with a white spectrum.

2. TESTS TO DETECT REGULARITY

A variety of methods to detect deviations from CSR in
point patterns have been developed for the most part on
the alternative of tendency towards clustering rather than
the tendency towards regularity. Cressie provides a com-
prehensive overview of these and other techniques with a
demonstration on the longleaf pine data set [2]. Some al-
ternative approaches are introduced below.

2.1. Empty boxes test

Consider a CSR process with n points on a set A in
R? that has been partitioned into N reqgions of equal area




to be referred to informally as boxes. A variety of tests
to detect regularity can be based on Mo, My, ..., My and
¥, Ya, ..., Yn where M, and Y; are random variables de-
noting respectively the number of boxes containing exactly
r points and the number of points in box i.

A simple test to test regularity is based on Mp, that is,
the number of empty boxes. The so-called empty boxes test
(EBT) based on Mg has been around for at least forty years
[3], but has traditionally been used to detect the presence
of too many empty boxes as an indication of lack of fit. In
this context, regular point processes (and humans) tend to
overfit and clustered point processes tend to not fit well.
A disadvantage of the EBT for minefield detection is that
there is no explicit modelling of collinearity and regular
spacing, per se; the EBT is a generic regularity detector.
However, the advantages of the EBT include its flexibility,
lack of edge effects and its robustness.

Another advantage of the EBT is that the null moments
of the test statistic can be calculated exactly without in-
dependence assumptions on Y1, Ys,...,YN. The expected
value and variance of Mo under CSR is given by

0-3 = Va?'[]Wo] po + N(N - 1)1900 - Mg @

i

where

po = Pr{¥; = 0}

1
] - —=)"
-7 @
2
poo=Pr{¥i=0,Y;=0} = (1-7)" &
and 7 = j in (4).
2.2. Generalizing the empty boxes test

The empty boxes test can be generalized by using
M1, M, ..., in addition to Mg to form test statistics. For
general  and s the moments analagous to (1) and (2) are
given by :

ur = Npr &)
0'3 = fpr-t N(N - l)prr - Il'z (6)
Trs — N(N - 1)1’1‘3 — HUris Q)

where ¢,.s = cov[M,., M,] for r # s and
n 1 1
. — —A\T 1 —_—— n-—r 8
po= (DEra-9 ®
1

(g o

as in (3) and (4).

f

prs

Let M = M, be the multivariate statistic vector
(Mg, My, ..., My)T with mean . and covariance .. Un-
der appropriate mild conditions,the quadratic form

Q=Qr=M-p)TZ (M- p) (10)

is approximately x2 with k + 1 degrees of freedom under
CSR. By considering both the sign of Mo — po with the
strictly nonnegative Q. to form the real-valued statistic

D = Dy, = sign(Mo — po)Qxk (11)

a one-sided test can be constructed . Positive values of D
indicate clustering and negative values indicate regularity.
Tests based on Dy are equivalent to the EBT. Moreover,
Q, is approximately exponential so that the test statistic
D, is approximately double exponential. A one-sided test
for regularity can be constructed using the approximation

4

Pr{D; < —d} = -21—6_2 (12)

where d > 0.
2.3. Skeptical likelihood test

It can be shown that the most likely configuration under
CSR would reject CSR under the empty boxes test. The
reason for this apparent paradox is that the test is rejecting
observations that are foo likely under the null hypothesis
suggesting some skepticism is in order. Generally, even dis-
tributions of the points among the regions are more likely
than uneven distributions. Without specifying an alterna-
tive, a skeptical likelihood test (SLT) for a statistic T with
null distribution f is to reject Hq for high values of f(T).

A skeptical likelihood test for minefield detection can
be based on the test statistic

T=Y) M,logr! (13)
=2

where significantly small values of T indicate regularity.
The mean and variances of (13) can be calculated directly
using (5),(6), and (7). In practice, the summation in (13)
can be truncated to simplify the computation.

2.4. Detection Performance Results

To demonstrate the EBT methods on the clutter example
(n = 100) in Figure 1 a value of N = 100 was selected
and the 80x720 region was divided into a 5x20 grid of
rectangles of equal size (16x36). One could think of this
example as having a SNR of 0 dB. The statistics for this
partition are Mo = 30, M; = 45, My = 20, and M3 =5
leading to P-values are of .017 , .045 , and .015 respectively
for the EBT, D,, and SLT.
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Figure 2. Empirical ROC curve for a point pro-
cess with 50 mines and 50 additional random
clutter points

In order to get a better understanding of the relative per-
formance of these three methods, 100 realizations of the 50
random clutter points were simulated. Figure 2 shows the
resulting empirical ROC curves. indicating that the three
methods are fairly similar. For example, with a false alarm
rate of .1 is approximately . the probability of detection
is approximately .8. This performance is impressive con-
sidering that the patterns are not always visually obvious
and these methods have no explicit modeling for collinear-
ity and except, perhaps, for the selected dimensions of the
regions no modelling of equal-spacing.

3. Examples of Chaotic Signals

Characterizing the difference between randomness and
chaos is a fundamental question that is perhaps more philo-
sophical in nature than mathematical, statistical, or physi-
cal. As is discussed recently in [1], a striking example to
illustrate the fuzzy boundary of these concepts is pseudo-
random number generators.

3.1. Pseudo-Random Number Generators

Uniform random variates Uy, Us, Us, . .. can be gener-
ated by multiplicative congruential methods of the form

Ug+1 = allxmodT (14)

Uniform Pseudo-Random Generator

Energy (dB)

1 1 1
01 02 03 04 05 06 07 08 09 1
Normalized Frequency

-35 i ! 1
0

Figure 3. Example of a Pseudo-Random Pro-
cess

along with some initial integer “seed” value Uy (for exam-
ple, see [8] pages 377-388). This method will necessarily
repeat, but the constants a and T can be selected in such
a manner to give a period on the order of T and a white
spectrum.

The EBT will be demonstrated on an example with
n = 256 samples from the chaotic process with param-
eters ¢ = 31623 and T = 26 — 1 = 65535. The time
series realization (Uy = 14349) normalized to give uni-
form deviates on the unit interval along with its spectrum
is displayed in Figure 3 along with its spectrum. With
N = 256 equally spaced intervals, there are My = 84
empty boxes which gives a statistically significant z-value
of —2.0024 (P = .0226). The other statistics have val-
ues of M; = 106, My = 49, M3 = 16, and My =1
which leads to less significant results of D; = —4.4754
(P = .0673) and T = —65.8104 (P = .0881) but still
provide some evidence that the sequence is not random.
Another pseudo-random generator that has been discussed
extensively in [1] and [6] has the parameters a = 16807
and T = 231 — 1 = 2147483647.

3.2. Kakutani-von Neuman Map

In this section we look at a minefield generated by a
variant of the Kakutani / von Neuman map shown in Fig-
ure 4 which we will denote by the function K. The map K
is an invertible, measure preserving map of the unit inter-
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Figure 4. Kakutani / von Neuman Map

val with a derivative of 1 (almost everywhere with respect
to Lebesgue measure) that is weak mixing but not strong
mixing (see [7] for details).

The (z,y) locations for the points in Figure 5 were
generated by

wrer = K(zr) vir1 = K (r + (e + zx)7/128) (15)

The unit square was partitioned into N=400 sections to use
the EBT. The My = 108 empty boxes are significantly
less than expected under CSR (z-value=-5). In this case,
the CSR hypothesis is rejected for a tendency to cluster.
However, there are clearly regularities and periodicities of
this ”minefield” that could be exploited as well.

4. Conclusions

The empty boxes test and its extensions offer simple,
flexible, and robust approaches to detecting regularity in
point processes. These methods are particularly applicable
to the problem of characterizing the difference between
random and chaotic processes as was demonstrated on some
nontrivial examples.
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Estimation Problem

Biilent Baygiin
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Abstract

Min-maz simultaneous signal detection and param-
eter estimation requires the solution to a nonlinear op-
timization problem. Under certain conditions, the so-
lution can be obtained by equalizing the probabilities of
correctly estimating the signal parameter over the pa-
rameter range. We present an iterative algorithm based
on Newton’s root finding method to solve the nonlinear
min-max optimization problem through ezplicit use of
the equalization criterion. The proposed iterative algo-
rithm does not require prior proof of whether an equal-
izer rule exists: convergence of the algorithm implies
ezistence. A theoretical study of algorithm convergence
is followed by an amplitude estimation example which
shows that decoupling detection from estimation entails
a very significant loss in estimation performance even
when optimal decoupled decision rules rules are imple-
mented.

1. Introduction

In practical applications, one frequently needs to
design a signal detector or a signal parameter esti-
mator without complete knowledge of the signal or
noise model. Several approaches to detector and es-
timator design exist in the case of incompletely char-
acterized models. Among these are invariance meth-
ods, Bayesian methods which use non-informative pri-
ors, and min-max methods. Min-max methods form an
important solution category because they ensure op-
timal detector or estimator performance under worst
case conditions. Furthermore, min-max solutions give
rise to tight performance bounds which can be used
to benchmark sub-optimal or ad hoc algorithms. Min-
max methods have been applied to problems of adap-
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tive array processing, harmonic retrieval, CFAR detec-
tion, and distributed detection.

Signal detection and signal parameter estimation are
typically considered as separate problems. In other
words, signal parameter estimation methods assume
that there is no uncertainty about signal presence.
However, there are many applications where signal pa-
rameter estimation has to be done under signal pres-
ence uncertainty, such as fault detection and estima-
tion in dynamical system control and antenna array
processing. Such problems are refered to as simulta-
neous detection and estimation problems. A min-max
solution to simultaneous detection and estimation was
recently given in [2]. The problem considered in [2] is
estimation of a discrete parameter under a false alarm
constraint. The statistical decision procedure which
solves the problem is called the constrained min-maz
classifier. The constrained min-max classifier is charac-
terized by a set of optimal weights. In Bayesian termi-
nology, the optimal weights represent a least favorable
distribution on the unknown parameter values. Nu-
merical solutions to min-max detection or estimation
problems involve nonlinear optimization to obtain the
least favorable distribution [3, 1]. On the other hand,
under certain assumptions, it is possible to formulate a
min-max solution by making explicit use of a simplify-
ing sufficient condition for min-max optimality. In the
case of the constrained min-max classifier, this suffi-
cient condition is the equalization of the correct classi-
fication probabilities. The purpose of the present work
is to present an iterative algorithm for efficiently com-
puting the constrained min-max classifier through the
equalization condition. An important attribute of the
proposed iterative algorithm is that it does not require
prior proof of existence of an equalizer rule. Conver-
gence of the algorithm proves existence, i.e. if we ob-
serve convergence, then the associated solution is the




constrained min-max classifier.

The correct classification probability of the con-
strained min-max classifier provides a tight lower
bound on the correct classification probability of any
similarly constrained detection and classification pro-
cedure. By using the proposed algorithm, we can com-
pute both this lower bound and the classification per-
formance of sub-optimal simultaneous detection and
classification procedures. Comparison of the perfor-
mance of sub-optimal procedures with the lower bound
allows us to assess the performance loss incurred by
employing a sub-optimal approach to simultaneous de-
tection and classification.

2. Problem Formulation

Consider the indexed probability space (2,0, P,),
where p is a parameter that lies in a finite discrete
parameter space =, o is a sigma algebra over ( and
P, is a probability measure defined on o. Let X be
a random variable taking values in a sample space ().
Assume that X has a probability density function f,(z)
with respect to a given measure. We will illustrate
our approach for the case of a location parameter, i.e.
fu(z) = f(z — p) for some fixed probability density
function f. Applications of the location parameter case
include modeling of a signal of unknown amplitude p
in additive noise whose probability density function is
given by f.

Define the hypotheses Hy, Hi,. .., Hy by:

H;: XNf“i($)=f(£E—[,Li), 1=0,...,n (1)

Let Ro,Ri,..., R, be the decision regions for hy-
potheses Hy, Hy, ..., Hy, espectively, i.e. the classifier
declares p = p; if and only if z € R;, 4 = 0,1,...,7n.
The probability of a correct decision under hypothesis
H;,i=0,1,...,nis given by

P,.(decide H;) = P, (Xe€ R)) (2)

We will be interested in choosing the decision re-
gions Ro, Ry, ..., R, such that the worst case correct
classification probability min; P, (decide H;) is maxi-
mized subject to a given upper bound a € (0, 1] on the
false alarm probability 1 — P, (decide Hp). A decision
rule which maximizes the worst case correct classifica-
tion probability under a false alarm constraint is called
a constrained min-maz classifier. In {2] it was shown
that the constrained min-max classifier is a weighted
likelihood ratio test:

ful®) o
ma (e F ®

i.e. if the maximum weighted likelihood ratio exceeds
the threshold v, then decide Hj,,,, where imee =
argmax;so {¢ifu (2)/fu,()}; otherwise decide Hp.
The weights c1,...,cy are computed as the solution
to a nonlinear optimization problem:

(min Z ¢;P,, (decide H;) . (4)

i=1

The threshold v is determined using the specified
bound «. Solution of the nonlinear optimization prob-
lem (4) could be computationally expensive. We will
outline an alternative solution scheme which charac-
terizes the min-max optimal classifier by means of a
sufficient condition.

Suppose that the parameterized density fu(z) =
f(z — p) has infinite support (f(z) > 0 for all z) and
has a monotone likelihood ratio. The infinite support
assumption is made to simplify the discussion of algo-
rithm convergence. Infinite support is not absolutely
necessary for the algorithm to work. An important
class of probability densities that satisfies the mono-
tone likelihood property is the single parameter expo-
nential family. Furthermore, a sufficient condition for
f(z — p) to have a monotone likelihood ratio is for the
function — log f(z) to be convex in z [4, page 509]. The
normal, the double exponential and the logistic distri-
butions all satisfy the convexity condition. Under the
monotone likelihood ratio assumption, it can be shown
that the constrained min-max classifier (3) gives rise to
the following decision regions Ry, Ry, ..., Ry:

Ry = (—00,%0];
Rz' = (.’Ei_l,CL‘i], i:l,...,n—l; (5)
R, = (.’En_l,OO)

The correct decision probabilities are given by:

P, (X € Ro) F(zo — o)
Pu(X€R) = F(z1—m)— Flzo—pm)

: (6)
P,.(X€ER,) = 1- F(zp_1 — itn)

where F is the cumulative distribution function with
density f. The acceptance region Ry for the null hy-
pothesis Hy can be specified explicitly. For any given
value of a € (0, 1], there exists a value of zp that satis-
fies the false alarm constraint: ¢ = F~1(1 — a) + mgq.
The remaining decision boundary values z1,...,Zn-1
will be computed by an iterative procedure.

A sufficient condition for min-max optimality is the
equalization of the correct classification probabilities
P,.(decide H;) for i = 1,...,n [2, Corollary 2]. The




equalization condition is represented by the set of equa-
tions

P, (decide H;) )
where p € (0,1) is the unknown common value
of the correct classification probabilities. Let y =
[z1,.- s ZTn-1,P]T (“T" denotes matrix transpose) and
define the function G(y) as follows.

=p, t=1,...,n

Flzs —m) - F(zo—pm) —p
s F(mg—uz)—F(an—ﬂz)—P
G(y) <
F(:L‘n 1= Un— 1)_ (mn—2"/-Ln 1) p

1= F(Tp-1—tn) — P

(8)
Then the set of equations (7) is equivalent to
G(y) =10, 9)

We propose to solve (9) iteratively using Newton’s root
finding method. More specifically, we consider the se-
quence y(k) generated through the iterations

T (y(k)G(y(k)) »
where J(y) is the Jacobian of the function G(y), i.e

def  O[G(y)l
@) = 3y,

.07

y(k+1) = y(k) - (10)

(11)

Forj=1,...,n—1,y; = z; and y, = p. Therefore,
the elements in the first n—1 columns of J(y) are found
from (8):

f(fﬂ(j—uj) ) ifi=j

o —f$j+1-—[l,j Jdfi=g54+1

[J(?i)]w - -1 ,j =n (12)
0 ,otherwise

A few words about the convergence of the iterative
algorithm (10) are in order. Assume that there exists
a solution y* to the equation (9). If

1. J71(y*) exists (the Jacobian is invertible); and

2. |[J(y" + 6y) — J(yO)Il < 718yl for some v > 0
and for all sufficiently small perturbations 8y (J is
Lipschitz continuous); and

3. []lJ7Y(y*)|| < B for some B > 0 (the norm of the
Jacobian inverse is bounded from above);
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then for any starting point y(0) that is sufficiently close
to y*, the sequence y(k) generated through (10) is well-
defined, converges locally to y* and has a quadratic rate
of convergence with coefficient 43 [5, Theorem 5.2.1].
Next we provide a sketch of the proof that the three
conditions are satisfied in the present problem.
Condition 1: Since f(z) > 0 for all z, the columns of J
are linearly independent.

Condition 2: The non-zero elements of the difference
6J of two Jacobians evaluated at points y + 6y and
y, respectively, are of the form +(f(z; + 6z; —_,uj) -
f(zi — py)). But f(z: + 6z — py) — flzi - Bi) =
f zitni ¢ f'(t — p;)dt. Assuming that the derivative f’
of the probability density function f is bounded, i.e.
sup, |f(z)] € M for some M > 0, it follows that
|f(zi + 0z — pj) — f(zi — pj)] £ M|6z;|. It can then
be shown that the Frobenius norm of §J, denoted by
[|6J]| is bounded above by a multiple of the I3 norm
of the vector §y. Since the ly-induced norm of 6J is
smaller than the Frobenius norm of §J [5, Theorem
3.1.3], Lipschitz continuity is satisfied.
Condition 3: For arbitrary z = [z1,...
the linear equation

,2n)T, consider

Jy(R)yk+1) =2z (13)

For notational simplicity, we will write the Jacobian
as J and suppress its dependence on y. After Gaus-
sian elimination, the equation (13) can be re-written in
terms of an upper triangular matrix J: jg(k +1)=72.
The matrices J and J are related by a non-singular
transformation 7', i.e. J = T'J. It suffices to estabhsh
an upper bound on the Frobenius norm ||J~!||r of J~1

because || J7!||r and ||J || are related by [|J~1||F <
ITlFIlJ~2||F and ||T||F is bounded. Suppose that

the last column of J is the vector [-a1,...,~a,]7,
ie. [J]m = —a;, it = 1,...,n. It can be shown that
al—landaz=1+ai_1#(z"—ﬂ—_“;) i=2,...,n. The

1K 1)7
Frobenius norm of J~! can be expressed as: ||J HiF =
[tr((J1)TJ-1)]/2, where “tr” denotes matrix trace.
After some algebra, we obtain an upper bound:

=, a 1 1)
j—1 = Sy -
< (-4, (14)
where L = max;{(a? +a2)/f*(z; — )}, i=1,...,n—

1. In finite dimensional spaces all norms are equivalent,
therefore there exists some 8 > 0 such that ||J|| < 8.




3. Applications on Simultaneous Detec-
tion and Classification in Gaussian
Noise

We will illustrate the iterative algorithm (10) for the

case of normal densities. Let f(z) = ﬁ exp(-—%;)

and p; =ifori=0,1,...,n. We consider three differ-
ent simultaneous detection and estimation rules. One
of the rules is the constrained min-max classifier de-
scribed earlier, which maximizes the worst case clas-
sification performance under a given false alarm con-
straint. One can also perform simultaneous detection
and estimation by combining a classifier with a sepa-
rately designed detector. With this strategy, the data
are not presented to the classifier unless the detector
declares “signal present”. In other words, the classifier
is gated by the detector.

We consider two gated classifiers and compare their
performance to the performance of the constrained
min-max classifier. Both of the gated classifiers use
a min-max optimal detector for detection, but they
differ in the design of their classifier structures. One
of them uses an unconstrained min-max classifier de-
signed independently of any detection objective. An
unconstrained min-max classifier maximizes the worst
case correct classification probability as if signal pres-
ence is certain. This classifier is obtained by remov-
ing the false alarm constraint (o = 1) in the con-
strained min-max classifier. The other gated classifier
uses a conditionally min-max classifier designed with
explicit knowledge of the detector decision regions.
A conditionally min-max optimal classifier maximizes
the worst case correct classification probability condi-
tioned on the detector having declared signal present.
The conditionally min-max classifier is obtained by re-
placing all the densities fy; (z) under the alternative
hypotheses Hi, ..., H, with the conditional densities
fu:(z]X ¢ Ro) in the analysis of Section 2. Since we
are using the min-max detector, Ry = (-0, Zo) as be-
fore, and z is specified by the false alarm probability
a.

Figure 1 shows the variation of the worst case cor-
rect classification probability min; P, (decide H;) for
the three simultaneous detection and estimation rules
as a function of the false alarm probability . In this
example o = 0.6, and there are five alternative hy-
potheses (n = 5). In general, the constrained min-
max classifier (solid line) performs best, while the un-
constrained min-max classifier gated by the min-max
detector (dashed line) gives rise to the lowest perfor-
mance. The conditionally min-max classifier gated by
the min-max detector (dashdot line), although bet-
ter than the unconstrained min-max classifier, still
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Figure 1. Worst case correct classification
probability as a function of a.

falls significantly short of the performance of the con-
strained min-max classifier for small c. On the other
hand, as a increases all three curves come together as
expected. This is because for high a, the three simul-
taneous detection and estimation rules degenerate to
an unconstrained min-max classifier for the alternative
hypotheses Hy,...,Hnp.
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Abstract

A hypothesis H is parametric if every distribution from
the process  defined by H belongs to a family of
distributions  characterized by a finite number of
parameters; on the other hand, if the distribution can not be
definided by a finite number of parameters, the hypothesis
is nonparametric.

In this paper, we analyze a detector based on the
optimum  permulation test, in the Neyman-Pearson sense,
and under Gaussian noise conditions, which operates on
radar video signal. The computational complexity of the
detector is high and its implementation in real time is
difficult, due to the mumber of operations increases with
the factorial of the number of samples. Also, we present an
algorithm that reduces the computational work required.

We also present the characteristic of detectability of the
optimum  permutation test under Gaussian noise
environments and different types of target models
(monfluctuating, Swerling I and Swerling 11). The detection
probability versus signal-to-noise ratio is estimated by
Monte-Carlo simulations for different parameter values (N
pulse, M reference samples and false alarm probability P,).

1.-Introduction.

There are many posibilities to solve radar detection
problems by means of nonparametric tests, which do not
have a global solution. We are interested in the class of
binary nonparametric tests called permutation tests, which
are distribution-free under independent and identically
distributed (IID) samples.

The distribution of a block of IID samples is invariant
under the permutation of its sample components. That is,
consider a IID sample vector (x,,x,,...,.x,) of n samples where
Fox) 1s the distribution function of a sample, if
Flx,x,,...%,)= Fofx,) Fy(x,)...Fy(x,), then
Fepxy %) =F(,x,.05,) =" =F(x,,...x,x,)

To generate a permutation test the sample space R” is
partitioned into »! regions D, (i=1,2,...,n!) where

0-8186-7576-4/96 $5.00 © 1996 IEEE
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D;={x=(x, ... x,) 1 ifx € D;, x (permutation) D}
in such a way that

”
D;nD;=0 ij=12..n! i%, and L}Jl)i:Rn
=

Each sample vector x belongs to one of these regions D,
(i=1,2,...,n!), and we can get a different vector by permuting
their components, each one belonging to one different
region D, It is possible to partition R"-space in different
ways in order to fulfil D,-conditions. A particular case is the
well known rank test [1,2,3], whose regions D, are

X <x <--<x.
L] i in

1

D.:{x:(x1 Ko X,):

with ;e {1,2,..,n}, i;#, when j=k,jk=12..n

Under the null hypothesis H, (target absent), the
probability that the sample vector x, belongs to one of the
regions D, is I/nl, i.e. Prob{xe D} = I/n!

Under the alternative hypothesis H, (target present),
there are D,-regions with more probability measure than
other ones and now the probability that x €D, (i=1,....n!) is
not uniform.

Given a D -partition, we define the decision region as the
union of K regions D, In order to get the maximum
probability of detection, we select the D, regions with
largest probabilities. Just under H,, the false alarm
probability P, is K/n!, where K is the number of D;-regions.
The optimum permutation test would be the partition that
achieves a maximum detection probability.

In radar applications, we have N sample vectors
X}, X5, Xy Where N is the number of pulses per antenna
beamwidth. Each sample vector x; has M noise reference
samples x;, j=1,2,..,M and the sample under test x,, i.e. x, =
(%;pX2---x,%;). Under the null hypothesis H, (target absent)
we suppose that the components of x; are IID, but under the
alternative hypothesis H, (target present) they are not IID
(reference samples x,,x,,,....x,, are IID and x, has different
distribution of x;, j=1,2,....M).

i




Now, the distributions associated with H, are

N M
Ao Hy= IILA (x )1 o (x)) (la)

i=] j=1

where /() is the probability density function of a noise
sample in the ith-pulse.
Under H,, we have

N M

Sell =TT 61, ) (1b)
i=] j=

where f,(x,) is the probability density function of a sample
under test x, (signal + noise) in the ith-pulse.

2.-Permutation Test Algorithm.

In order to test H, against H, in Neyman-Pearson sense,
we take the likelihood ratio

N M

H [I:Efo(xy)] :/;,(xi) B I}%fi’(v,)

oy B
i1 (6)

Aol Hy)

N M

1 (RITRCR PACY

i=l j=l

In case of Gaussian noise conditions and nonfluctuation
target models, applying (2) at the output of linear envelope
detector, we have (after taking Neperian logarithm):

N
L) S L (29 +(-N9 @)

ﬂX/HO) izl

where S is the signal-to-noise ratio (SNR), and I, () is the
modified Bessel function of the first kind and order zero.

(a) If signal-to-noise ratio (SNR) is low

fodH) ¥

L ~ By}
"y ()
(b) If SNR is high
SeH) X
L ~Zix,
"f(v/HO) i=l x| (4b)

We optimize the permutation test using (2) or (3), by
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permuting all the samples in each vector x=(x;; X5 Xas» X)),
i=1,2,...,N and selecting the upper results in (4). The number
of K higher results selected depends on the false alarm
probability Py, i.e. P ,=K/(M+] )V, where X is the number
of D,-regions associated with upper results of (3) after doing
permutations.

We optimize the permutation test using (3) or (4) in the
following way, from i=/ to N we have the matrix (for
application of (4a)).

22 2 2
11 X2 Xune X
2 2 2 2
oy Xon .. Xay X3

5

2 2 2 2 )
T Xind %
22 2 2
NI XNz Xng XN

adding the elements of the right column, we have
N 2
Y=y % ©

Now permuting the components in each vector (row
vector) in (5) and summing by columns, and ordering these
(M+1)¥ summs from the lower to the upper, we get the set
of Kth-greatest summs. If (6) is in this set, it is supposed
target present (hypothesis H,); otherwise, it is supposed that
target is absent (hypothesis H, ).

An efficient algorithm is as follows. First, in (5) we order
from the lowest to the highest the components of each row
vector, obtaining the matrix (7):

2 2 2 2
2N a2 IOM Zimen
2 2 2 2
1 ZoM  Pae
7
2 2 2 2 ™
Zi X2 Zing ZiMa
2 2 2 2
ZN1 ZN2 a0 Zan 4

~
P

y 2 2 2
where 2 <zp< "<Zp/[<Zppa




we get
Q4 +1) A
Vi :2 Zirte (8)
-

Note that (8) is the upper value. Now, swapping z ,,
and z,y,, and summing again the new right column, we get
the next value y,*”, and so on in order to obtain the K upper
values; so we have y,© (C=M+1,M,,1) In each step we
compared the y,© with the y value of (6), if @ <y, stop
the process with the first row and go to the second row-
vector of (7). So in (7) we swapp z , and z,,,, in order to
get »,™, and so on. We repeat this algoritm in order to know
if the y belongs or not to the K uppers values. If we get K
upper values y,/“ > y where (1<C<M and 1<r<N), it is
not necessary continue the process, testing the N rows and
doing the M+1 swapping in each row; in this case we
supposed that the target is absent (hypothesis H,).

3.- Computer results

We have analyzed the detection performance of

permutation tests in terms of detection probability P, with
constant false alarm probability P, considering (4a), as the
statistic for the implementation of algorithm described.

For a particular target model, the detection probability P,

1s a function of SNR, P,, N, and A{. We have considered
P,=10and 10 ®as pr actlcal radar values. We present in the
Figures 1, 2 and 3, P, -curves with M =6 and N=10 and 12
for different types of targets (Swerling II, Swerling I and
nonfluctuating). As it can be seen, we obtain a important
variation in P, for a low difference in N-values. Also, it is
observed that as P, decreases then the diference between P,
curves increase.

The Figures 4, 5 and 6 show P -curves for N=8 and M=
10 and 16. The variation in P, with N is more important
than the variation with M, and this fact is because the
integrate pulses convey more information than the noise
reference samples. Also, from Figures 3 and 6, we can see
very large ditferences in SNR for P~curves of N=10 and 12
when P, =10*®. More reseach worh is required about this
fact.

Finally, due to P, = K/A7+1)", the computational
complexity of the permutation test algorithm increases with
M and N values for a specific Pf,,-values because K
increases. Consequently an optimization process is required
for the best determination of N, M and SNR in practical
applications.

Other results about optimum parametric and rank
detectors against permutation test will be published
elsewhere. Differences up to 1 dB in SNR are found
between rank test and permutation test for the same P, P
Nand M.
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A GENERALIZED LIKELIHOOD RATIO TEST DETECTOR FOR MOVING
TARGETS IN CLUTTER

Ivars P. Kirsteins
Naval Undersea Warfare Center
Code 8124
New London, CT 06320 USA

ABSTRACT

A generalized likelihood-ratio test (GLRT) detector is de-
rived for detecting a space-time signal in the presence of
unknown subspace interference and unknown target doppler.
The near optimality and constant false alarm rate (CFAR)
property of the GLRT is shown by the relationship to the
uniformly most powerful invariant (UMPI) test using a sim-
ple approzimation. Ezamples are presented comparing the
performance of the proposed detector against the UMPI test.
The ROC curves indicate that the GLRT detector compares
favorably to the UMPI detector.

1. INTRODUCTION

We start by reviewing the subspace interference model.
Suppose we have an array of m sensors that are simulta-
neously sampled at time #; and the outputs stacked into
the vector x(tx) = [z1(tx)z2(tk) - - 2m(tx)]T. We say the
interference is subspace if at any instant of time, it can be
represented as

.
x(te) = HOy, = ) ha63

n=1

@)

where H is a m x r matrix whose columns generate the
interference space and ©,, is a r x 1 vector of scale fac-
tors. The data vector x(#x) is a linear combination of
the columns of H, which remain fixed, i.e., do not change
as a function of time. The only dependence on time is
through ©,. The subspace model has wide application.
Many type of interference components, e.g., clutter, can
be represented using a subspace model (see Scharf [1] for
an extensive treatise on subspace or reduced-rank model-
ing and [2]). For example, if the sensor outputs x(tx) =
(011(t — 1) g2I(t — 12) -+ gmI(t — Tm)]T (where I(t) is
some interference time series) are time delay steered to align
the interference wavefronts (output of the kth sensor is de-
layed by 7x — 71), then x(ik) = I(tx)[g192 -+ gm]T where
gk is the gain of the kth sensor. Also, colored noise can be
modeled as subspace where the subspace dimension is pro-
portional to bandwith [1, 2]. Thus narrowband components
can be represented using a low order subspace model. An-
other aspect of the subspace model is it inherently accounts
for array calibration error, eg., gain errors.
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1.1. Signal and interference model

Usually the received signal has undergone multipath dis-
tortion or time dispersion from the channel. Therefore the
waveform received by the nth sensor is modeled as

Ln

Sa(t) = Z cks(t"_"’id_‘_‘sﬁ)

k=1

(2)

where s(t) is the signal replica, 7 is the time it takes for
the signal to travel from the source to sensor 1 over path
k, 67 is the inter-sensor propagation time delay measured
relative to sensor 1, ¢ = (¢ + v)/(c ~ v) is the contrac-
tion/dilation of the signal(s) due to target/platform motion
(where ¢ and v are the propagation and relative target ve-
locities, assumed to be the same for each multipath), and
cx is a scalar corresponding to the attenuation from the kth
path. The snapshot of sensor outputs at time ¢; is then

L

8 = ) o l[s(ti/a—1x/a) s(tj/a - ru/a — brs/a)

k=1
- 8(tjfa — i/a — bt [a) ]T (3)

or, after substituting (‘i for the vector of data samples due
to the kth path,

L

5 = ) ad

k=1

4

A total of K snapshots of data are collected at times
{t1,t2,...,tx} and stacked into a matrix. The matrix cor-
responding to the signal component in the data is then

D*=[8 18] - - |8Kk] (5)
and has the equivalent form
L
D= o D} (6)
k=1
where Df =[G} | R | -~ | ¢E).

Using the above signal representation, the received space-
time data matrices are modeled as

Ho: X H9 + N

(M)
(8)

L
HO+Y oD + N
k=1

Hy: X




under the signal absent and signal present hypotheses re-
spectively where § = [010; -+ ©2]7. The elements of the
background noise matrix N are modeled as IID complex
Gaussian distributed with zero-mean and variance . We
now discuss the uniformly most powerful invariant (UMPI)
test for this hypothesis testing problem.

1.2. UMPI test

We want to test the hypothesis that Y, |cx> = 0 (signal
absent) or ), |cxf? > 0 (signal present). We assume that
the interference subspace H and doppler a are known, but
that the parameters 8, cx, and o® in (7) and (8) are un-
known and deterministic, ie., can take on a range of values.
In sonar and radar, it is usually difficult or impossible to
determine distributions for the interference and signal pa-
rameters since the relevant scattering and chanrel physics
are usually not known or at best, partially known. This
type of detection problem is called a composite hypothesis
testing problem [8].

It is difficult to find an optimum test when no probability
density function is available for the unknown parameters
[8, 4]. Ideally, we would like to construct an uniformly most
powerful (UMP) test [4]. A problem is that UMP tests
usually do not exist [8, 4].

In [3] it is argued that principles of invariance should
be used to find the UMP test which is invariant to the
unknown nuisance parameters (eg., noise variance, signal
phase), known as the UMPI test. The motivation is that
nuisance parameters are probably responsible for the non-
existence of the UMP test in the first place [3]. Also, in
many applications the test should be invariant to nuisance
parameters such as the background noise level, ie., a CFAR
test. However, the UMPI test is also difficult to find and
may not exist. An alternative approach frequently used is
to form the likelihood-ratio and replace the unknown pa-
rameters by their maximum likelihood estimates [8]. This
is called the generalized likelihood ratio test (GLRT).

Scharf [6] derived the GLRT for the related problem of
detecting in a single data snapshot a subspace signal in
the presence of subspace interference (when the subspace is
known) and showed that it is the UMPI test. The space-
time signal and interference models we have are analogous
to the data model used by Scharf [6] if the matrices in (7)
and (8) are vectorized (by stacking the matrix columns into
a vector). Vectorizing (7) and (8) and applying the results
of {6], the UMPI test is

Hy
1P X'l >
| P x'|% <

8 Ho

©

where the pro-
jection operators are given by Py =1-HHYH)™ HH,
Ps = S'(S'HS')"IS'H, and P& = I — Psi. The vectors
are $' = [vec(Pj}'Df)Ivec(Pi}"Dg)|---|vcc(P§D2)] and
x' = vec(P#X). The scalar A is some threshold. The
operator vec(-) takes a matrix and converts it to a vector
representation by stacking the columns. The numerator of
(9) can be intrepreted as the magnitude-squared output ofa
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space-time matched filter (beamforming-matched filter pro-
cessing) using as the replica the part of the signal(s) which
remain after the interference has been nulled. This is then
normalized by an estimate of the background noise variance
given by the denominator of (9). Because (9) is invariant
to scalings of the data matrix and rotations in the column
space of H, it is the best possible CFAR detector.

Unfortunately, test (9) usually can not be implemented
because the interference subspace matrix H is not known
(e.g., H is a function of such things as the channel, direction
of arrival, array geometry and sensor characteristics which
are either unknown or at best, partially known) and the tar-
get multipath structure and doppler are also unknown. In
previous work Kirsteins [5] proposed a GLRT detector for
the above problem given that doppler is known. The intent
here is to extend those results to the case when doppler is
not known and determine the effect on performance. In the
remainder of this paper we derive the GLRT for the above
hypothesis testing problem assuming the interference sub-
space H and target doppler are both unknown and then
discuss its relationship to the UMPI test and determine
analytically the effect on performance when doppler is un-
known. Finally, some numerical examples are presented
comparing the performances of the GLRT and UMPI tests.
We start by deriving the GLRT.

2. GLRT

A GLRT statistic for choosing between hypotheses (7) and
(8) is

minz,,60 || X — HOoO"%"
min g, 01,061, e, 1X — Hi81 = Yoy ox Dill%
(10)
where H, 8, a, ck, and o2 have been treated as unknown.
The GLRT statistic (10) is simply a ratio of fitting errors.
The numerator is the error in fitting the matrix X by a rank
r matrix and the denominator is the error in jointly fitting
X by a rank r matrix and E£=1 e Df.
The numerator in (10) is easily evaluated using the sin-

21 =

gular value decomposition (SVD) of X as ming,,6, ||[X —

Hobol% = v, +1 42 where 42 are the singular values of
X. We need to evaluate the denominator of (10). Un-
fortunately, a direct solution is not available. We propose
an iterative scheme to perform the minimization based on
the criss-cross regressions method of Gabriel [7] for solving
the weighted low rank approximation problem. Basically
the idea is to linearize the optimization problem, for each
hypothesized doppler a, by holding H constant and then
minimizing with respect to only 8 and the cx. This is a
standard linear least-squares fitting problem and is easy to
solve. The procedure is then repeated, except that this time
0 is replaced with its estimate from the previous step and
the minimization now done with respect to H and the cx.
These steps are continued until convergence. The algorithm
steps are summarized below:

a. Initialization. Iteration counter k is set to zero k = 0.
Select initial guess Ho.

b. k=k+1




¢. Holding Hx..1 fized, minimize with respect to only 8 and
Ck:

min

9k, ék =arg
6,¢3,..,¢

L
IX — Hie10 = > o Dilf%

k=1
d. Holding 8y fized, minimize with respect to only H and
Ck:

L

IX — HOx = > e DEII%
k=1

min
1€Y1 yeesCL,

Hy,éx = arg

€. Check if converged. If not converged, go back to step b.

The operator arg here means the solution to the mini-
mization problem.

2.1. Relationship to UMPI test

We now discuss the relationship of the proposed GLRT to
the optimum UMPI test. It was shown in [5] that when
the signal Zk 1 ¢k Di and background noise N are much
weaker than the subspace interference H@ with doppler «
known, the GLRT has the approximate form

L Ps" x|I%

~I7 s X" 1%

(11)
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where Py = s”(s””s")-ls"”, Psi = I — Py,
P =1 -67(68%)"19, x" = vec(PHXPe) and §" =
[vec(Pi D P) | vec(PiDEP-) |- - - | vec( Pa D Pg)]. The
approximation (11) and UMPI test (9) are nearly the same
except for a post-multlphcatlon of X and the signal by the
pro_]ectlon operator P;*. The post- multiplication of X by
Pt corresponds to an additional temporal nulling of the
data (Pe projects onto the orthogonal complement of the
complex conjugate of the row space of the subspace inter-
ference matrix H#, which corresponds to the time series
observed by each sensor due to this interference). The ex-
tra temporal nulling can be intrepreted as a loss due to
estimation. Test (11) is also CFAR since it is invariant to
scalings of the data matrix.

The distribution of (11) has been derived in [5] and was
shown to be central and non-central F distributed under
Ho and H, respectively.

2.2. Performance degradation

We now discuss the loss in performance when estimating
doppler. When the signal is present and not too weak com-
pared to the background noise N, we expect the test statis-
tic (10) to be nearly the same as when doppler is known
(at high signal-to-noise ratios doppler should be estimated
accurately). However, when the signal is not present (noise
only case) the value of (10) will clearly increase, resulting
in an increased false alarm rate for the same threshold. We
now determine the extent of the increase using (11). An
exact analysis is difficult since it involves determining order
statistics. Here we present an approximate analysis using
(11) given that the possible range of dopplers is restricted
to some small interval (often times we know the feasible
target velocities).
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Approximation (11) can be rewritten as

1
2 7" |12 "2
1= Py x" I/l %" |I%

(12)

When doppler is being estimated, the above approximation
becomes

1
1| Pey x" |I%/11x" I

(13)

A max

An equivalent test statistic is

x”HPS{,’ X"
a X x!"H x 1t

(14)

Next linearize (14) about a¢ by keeping the first-order terms
of its Taylor series expansion. This results in
o x" Psn x"
a=ap

+ (e —a0) (aa
(15)

If @ is restricted to some small interval [ao — A, ap + A), the
maximum of (15) must occur at one of the end points of the
interval. Therefore the maximum of (14) is approximately

anP " x

2; (a) ~ X"HX"

xIIHxII

xIIHPs” JcII
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xr/Hx//

3: 4 "
g X Psg X

3a (16)

xIIHxII

a=ag

where the first term in (16) is the GLRT when a is known
and the last term is the perturbation due to estimating
doppler.

We now calculate the second moment of the last term in
(16) (the first moment is difficult because of the absolute
value), that is, the expected value of

A? 8 _um 2
= oy (5a X P X an

Replacing (x"#x”)?2 in (17) by its expected value
(02)2((771 r)? (K =r)?+2(m—r)(K —r)) and using some re-
sults in [9] for the moments of complex Wishart distributed
matrices, the expected value of e is found to be

A? _
(m—r2(K—r)2+2(m-r)(K -r))

Ele] =

é - 2 2; 0 &
trace[(%- Py Ia=ao) ]+ trace [% Py |a=ao]
(18)

where P" is obtained applying the previous formulas using
= [oec(UF DY) | vec(UEDIVE) |- | wec(UF DI Vo)1 in

placé of S” and the orthonormal columns of matrices U
and Vo span the column spaces of Pj and Py respectively.
Discussion

As expected, to first-order the magnitude of the pertur-
bation (relative to the detector when doppler is known) is
related to the doppler resolution of the waveform. To ad-
just detector thresholds, we can approximately determine
the expected value of the perturbation using /¢ and then
(13) to determine the increase of z;.




3. NUMERICAL EXAMPLES

In order to evaluate the performance of the GLRT detec-
tor a number of studies were made. We simulated an ac-
tive sonar system with an array of 10 hydrophones with
half-wavelength spacing. The reverberation component
was modeled as arising from IID Gaussian point scatterers
(Rayleigh distributed amplitudes and uniformly distributed
phases) along a line perpindicular to the center of the array.
The per sample reverbation power is normalized to unity.
The ambient noise component is modeled as white Gaus-
sian with variance 3.125 x 1072, The transmitted pulse
is a .6 second 400-425 Hz LFM waveform. The received
target echo is modeled as Rayleigh fading with variance
1.95 x 10~°. In all simulations the signal is arriving 1/2 of
beamwidth from broadside, noting that the reverberation
is arriving from broadside.

The target velocity was set at 4 m/sec. A total of 200
independent trials were performed. The UMPI test, GLRT
when target velocity is known, and GLRT when target
doppler is not known (doppler search is restricted to the
interval 0-5 m/sec) were evaluated for each trial using the
same realizations of interference and signal.

The measured ROC curves are plotted in figure 1. Note
that the unknown target doppler GLRT is close in perfor-
mance to the GLRT using the correct target doppler and
also the UMPI test. Next, the square root of (18) (second
moment of the increase of the approximate test statistic
(14)) vs. A is plotted in figure 2 (note that A = .004 cor-
responds to a velocity change of about 30 m/sec). This
is compared with the experimentally measured second mo-
ment. The plots indicate the approximations are accurate
over a wide range.

4. CONCLUSION

The theoretical and experimental analysis indicates that the
proposed GLRT detectors perform well. Furthermore, for-
mulas are provided relating the GLRT’s to the UMPI test
and allowing the approximate calculation of the expected
increase of the test statistic when doppler is estimated.

REFERENCES

[1] L.L. Scharf, “The SVD and reduced-rank signal pro-
cessing,” Signal Processing, Vol. 25, pp. 113-133, 1991.

[2] L.L. Scharf and D.W. Tufts, “Rank reduction for mod-
eling stationary signals,” IEEE Trans. on Acoustics,
Speech, and Signal Proc., Vol. ASSP-35, No. 3, pp.
350-354, March 1987.

[3] L.L. Scharf, Statistical Signal Processing: Detection,
estimation, and time series analysis, Addison-Wesley
Publishing Co., 1991.

[4] T.S. Ferguson, Mathematical Statistics: A Decision
Theoretic Approach, Academic Press, New York, 1967.

[5] I.P. Kirsteins, “A Class of Generalized Likelihood-
Ratio Tests for Detecting a Signal in Unknown Sub-
space Interference,” in preparation.

[6] L.L. Scharf and B. Friedlander, “Matched subspace de-

tectors,” IEEE Trans. on Sig. Proc., Vol. 42, No. 8, pp.
2146-2156, Aug. 1994.

19

[7] K.R. Gabreil, “Lower Rank Approximation of Matri-
ces by Least Squares Methods With Any Choice of
Weights,” Technometrics, Vol. 21, No. 4, pp. 489-498,
Nov. 1979,

[8] H.V. Poor, An introduction to signal detection,
Springer-Verlag, New York, 1988.

[9] J.A. Tague and C.I. Caldwell, “Expectations of use-
ful complex Wishart forms,” Ohio University technical
report, Athens, OH, 1993.

Probability of detection

10" 10°

107 L L
107 10
Probability of false alarm
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when doppler is unknown.
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ABSTRACT

Muliplicative jumps have been considered in many ap-
plications. These applications include speckle signal in
radar images, mechanical vibrations, non-linear time
series and random communication models. The prob-
lem addressed here is the detection of multiplicative
jumps using the Neyman-Pearson test. This test con-
stitutes a reference to which suboptimal detectors can
be compared. In practical applications, the parameters
of the noise and of the jump have to be estimated. The
Maximum Likelihood Estimator and the Cramer Rao
bound for these parameters are then studied.

1. INTRODUCTION

This paper studies the performance of a multiplicative
jump detector based on the Neyman-Pearson test. For
the sake of simplicity, we consider the case of a shifted
step embedded in a multiplicative non zero mean white
Gaussian process, which leads to simultaneous mean
value and variance jumps. This kind of signal has
been considered in many applications. These applica-
tions include speckle signal on piecewise constant back-
grounds in radar images, mechanical vibrations, non-
linear time series and random communication models.
In the first section, we formulate the problem and de-
velop the optimal Neyman-Pearson test [1]. This test is
optimal in the sense that it minimizes the probability of
false alarm (Pfa) for fixed probability of non detection
(Pnd). The second section is devoted to the estimation
of the multiplicative jump parameters which leads to a
suboptimal detector.

2. NEYMAN PEARSON TEST

The problem addressed here is the detection of multi-

plicative jumps using the Neyman-Pearson test.
Under hypothesis H;, the signal is a stationary

white Gaussian process 2(n) with mean m and variance

o2,

0-8186-7576-4/96 $5.00 © 1996 IEEE
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Under hypothesis Hy, the process z(n) is multi-
plied by a step of amplitude A at time ng:

y(n) = z(n) [1 + AU (n — ng)]

where U(n) is the Heaveside step. The Neyman-Pearson
test is then defined by:

L (Y |Ho)
In (1), L (Y |H;) is the Likelihood function for the vec-

tor Y = [y(1),...,y(N)]* under hypothesis H;. Using
the normality of vector Y, Hyp is rejected if:

Hj rejected if > k(Pnd)

N

7= 3

i=ng+1

[y@ —m (%j—j)] C<send) ()

Introducing ’chetunit normal n-dimensional variable W =
[w(1), ..., w(N)]

_ Y -m(1+ A)

o+ A) under Hy

(3)

and
Y-m

W =

under H;

we can express Z as the sum of N — ng independent
and identically distributed (i.i.d.) variables:

N
Z=d; Y (w()+M;)? under H;

i=ng+1

(4)

with

_m(1+A4)

=Gt A ydop =0 (14 A)° under H,

My (5)

and
m

= cE+A) (6)

Eq. 4 shows that, under hypothesis H;, the distribu-
tion of Z/d; is a non-central x? distribution with N—nq

M, dy = 02 under H;




degrees of freedom and with non-centrality parameter
A;j = (N —no) M; [4]. The probabilities of false alarm
and of non detection can then be expressed as functions
of the cumulative distribution function of a non-central
x? distribution :

S(Pnd)/do
Pnd= / fo®) di )
+oc0
Pfa =/ fi(t)dt (8)
S(Pnd)/dy

In these equations, f;(t) denotes the probability den-
sity function of the x? distribution with N —no degrees
of freedom and with non-centrality parameter A; =
(N —ng) Mj. As an example, we consider N = 2048
samples of a Gaussian distributed random sequence
with m = 1 and 62 = 1. The multiplicative jump
occurs at time ng = 1024. The variations of pfa and
pnd as functions of the threshold S are plotted in Fig.
1 for different jump amplitude A:

08 |
Pnd

0.6 }

04 |

Pfa and Pnd

0.2 f

0 Lt
1340 Threshold §

1910

Figure 1: Pfa and Pnd as functions of the threshold S
(Dashed Line: A = 0.05, Continuous Line: A = 0.01).

As it can be seen, the Neyman-Pearson test shows
good performance. This test constitutes a reference to
which suboptimal detectors can be compared. To study
the sensitivity of the test as a function of the jump
amplitude A, we have plotted in Fig. 2 the variations
of the probability of false alarm as a function of A for a
fixed probability of non detection (Pnd = 0.01). Ascan
be seen, a multiplicative jump with amplitude 4 > 0.1
can be detected with low probabilities of non detection
and of false alarm. However, in practical applications,
the parameters m, 02, A and ng are unknown and have
to be estimated. In the next part of the paper, we
derive the Maximum Likelihood Estimator (MLE) and
the Cramer Rao Bound for these parameters.
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PFA(A)

0.08
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Figure 2: Probability of False alarm as a function of the
jump amplitude for fixed probability of non detection
Pnp =0.01.

3. MAXIMUM LIKELTHOOD ESTIMATOR

The Maximum Likelihood principle [1] provides a method
to estimate the parameter vector 6 = (m,02%, A,ng )t

from a finite length data record Y = (y1, ---, ¥ ~). When
a jump occurs at time no, the likelihood function of the
Gaussian vector Y is defined by:

1
(2ro2)¥ (1 + A)N ™

exp o7 {SNQ (% —m)2} ©

t=1

L(Y;0)

with d; = 1 for i € {1,...,no} and d; = 1+ A for
i€ {np+1,...,N}. The MLE of the vector 6 denoted
by 81 is the one which maximizes the likelihood func-
tion over a subset © of R® x E with E = {1,...,N}.
When the vector (A, ng)’ is known, the MLE of (m, %)
is obtained by setting to O the partial derivatives of
L(Y'; 6) with respect to m and o%:

N
~ 1 Y;
ML = =5 _— (10)
N i=1 d;
N 2
~ 1 Y,
GuL = N Z (I - mML) (11)
i=1 t

When the vector (A,n)’ is unknown, we substitute
the expression of 7y, and 33, in (9) and drop the
constant terms. We need now to maximize:

J(Y;A,n0) = — (N —no) Ln |1 + A

N
Amg ¥ (4-foiam) Y




with:

. 1 N 5
S0idm) =53 4 (13)
Setting to 0 the derivative of J; (Y; A, no) with respect
to A leads to a second degree equation with respect to
A. The solution of this equation gives us an expression
of A as a function of the jump time ngy and of the obser-
vations y; denoted by J5 (Y;n9). When ng is known,
the MLE of A is then given by:

‘ZML = Jg (Y; no) (14)

When ng is unknown, its MLE is obtained by the ar-
gument of the maximum of the criterion J; (Y;no) =

Ji (Y; A\ML,no) such that:

J3 (Y;noarz) =n£\{axN J3 (Y;n) (15)
In other words, the maximization of L(Y';6) over the
whole parameter vector 8 is equivalent to the maxi-
mization of J3 (Y;ng) with respect to ng only. The
MLE of m,0? and A are then given by replacing no
by 7oarr in (10 ), (11) and (14). Note that the max-
imization of J3 (Y;ng) with respect to ng is a discrete
maximization which is very simple to implement. The
mean and standard deviation of the MLE are shown
in Fig. 2.a),b) ,c) and d) and compared to the true

parameters m = 1,02 = 1,A = 0.5 and ng = & for
different number of samples N.
1 : . .
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8 4 -
2
= 0.6 ~
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4. CRAMER RAO BOUND

It is well known that the covariance matrix of any unbi-
ased estimator cannot be smaller than the inverse of the
Fisher information matrix known as the Cramer-Rao
bound (CRB). For a parameter vector 8 = (6, ..., 0p)t,
the elements of the Fisher information matrix are given
by:

8%InL(Y;0)

W} 1<kl<p
(16)

where L (y;0) is the probability density function of

the vector y = (yy, ...,yN)t. For Gaussian time series,

many equivalent expressions for the Fisher information

matrix can be found in the literature [3]. For instance,

we have:

[ (9)]1;,1 =

1 6)), = E {—

1 OR (0)

OR®) ()BR(O)}

{R-l (6) == %,
+[6_gg(;{))] R71(8) [67;_0(,‘9)} (17)

where tr{.} denotes the trace operator and R (8),m (6)
are the covariance matrix and the mean of the vector
= (Y1,...,Yn)"




When ng is known, using eq. (16) or (17), the
Fisher’s information matrix I, corresponding to the
vector a = (m, 0%, A)t can be computed. The following
results can be obtained:

N 0 m(N—ngp
rz N 1";,|-A o
~ T
I, = 207 (1+A)o?
m(N—-no N—n N—'nq m?
1+A)o (1+A)e?  (1+A) (’Ef + 2)

The determinant of this matrix is of the form det (I5) =
Cno (N — ng) with C > 0. Thus, when the jump occurs
at time ng = N or ng = 0, I,, is singular and we cannot
estimate A with (14).

When ng is unknown, the parameter vector is
0 = (m,0%, 4, no)t. The problem of finding a bound
for the covariance matrix of §M 1, becomes difficult be-
cause np is a discrete parameter (belonging to the set
{1,..., N}). If we consider that the jump occurs at time
to € [0,T], the MLE of o is obtained by maximizing
Js (Y;ng + 1), no = int(to) being the integer part of tp.
In this case, we cannot derivate the likelihood function
with respect to to which prevents us to compute the
terms [Ip); 4 of the Fisher’s information matrix. Thus,
the CRB for the vector # cannot be computed.

For a known parameter no, a comparison between
the mean square error (MSE) of 6/ estimated with
N, = 500 Monte-Carlo runs and the CRB is presented
in Fig. 3. In this figure, the MSE of 651 in the case of
known and unknown parameter ng is also compared.

5. CONCLUSION

The optimal Neyman-Pearson multiplicative jump de-
tector is derived. For fixed probability of non detection,
the threshold minimizing the probability of false alarm
can be determined. This test constitutes a reference
to which suboptimal detectors can be compared. In
practical applications, the parameters of the noise and
of the jump are unknown. The Maximum Likelihood
Estimator and the Cramer Rao Bound for these pa-
rameters are then studied. The next step in our study
will be to compare our results with a wavelet based
detection strategy [2].
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Abstract

The problem treated in this paper is the Bayesian es-
timation of the variance of the sampling jitter occuring
when a process is irregularly observed. This problem
15 often met in practice [2], and has already received
treatment in [1][5] using higher order statistics. The
Bayesian solution to this problem is performed using
powerful stochastic algorithms, the MCMC ( Markov
Chain Monte Carlo) methods.

1. Statement of the problem
1.1. Motivations

The problem addressed in this paper is the estima-
tion of the variance of the jitter occuring while sampling
irregularly a process whose a priori density is known.
This problem has already received treatment in [5]
for example, and [1] in the case of a Gaussian pro-
cess, using higher order statistics: the second method
is mainly based on the fact that a continuous Gaus-
sian process does not give birth to a discrete Gaussian
process when irregularly observed. In this paper we
propose a Bayesian statistical approach for estimating
this quantity, in a wider framework, because we remove
the Gaussian assumption.

The main interests of the approach we develope in
this paper are that: '

- it does not require a lot of observations (as in the
case of higher order statistics),

- we remove the assumption of Gaussianity of the
continuous process which is sampled,

- we estimate the a posteriori probability density of
the jitter, (thus allowing the calculus of conditional ex-
pectations, confidence intervals...)

- we use stochastic algorithms, the MCMCs (Markov
Chain Monte Carlo), which have been very popular for
fifty years in statistical physics, and more recently in
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image processing and statistics, but are not yet popular
in signal processing despite their power.

1.2. Assumptions-Notations

- (£ (t)) ;g 1s a continuous time process,
- this process is sampled at times:

n=n+en (1)

where the (5), ¢4 are zero mean iid, and we note y, =
z(tn).
- £1,n 18 a useful notation for (‘”n)nzl,...,N'

2. Bayesian solution to the problem

We wish to estimate the following density:

plo/yi—n) (2)
where o is the variance of the sampling jitter, and
¥1— N the observations.

Remark 1 it is worth noticing that in this paper, we
restrict ourselves to o as an unknown parameter of
the distribution of the time perturbations. Obviously
o could be replaced in all what follows by the complete
finite dimensional parameter vector @, characterizing
the distribution.

This problem can be thought as a missing data prob-
lem, where the y;_,n are the incomplete data, which
can be completed by the ¢ n to form the complete
data set y1 4N, €1, N-

We thus use a stochastic algorithm that allows us to
estimate the following joint density:

p(o, 1N [Y1—N) (3)

and thus the required density, p (¢ /y1—n )-

A natural method would be here to use the Gibbs
sampler [4], which consists in drawing iteratively and
alternatively subsets of the parameters, according to




others, thus building a chain of samples. Under mild
conditions [4], the joint density of the samples drawn as
described above will converge to p(o,e1—nN /Y1—N )
thus providing a representation of this joint density.

In our case, sampling from the Gibbs sampler
amounts to draw iteratively and alternatively with the
following laws:

p(o/y1—N,60—N) (4)

plei—sn [0, 41N )

which using the Bayes’s rule yields:

p(o /yi—n,e158) x pler—n/o)p(o) (5)
pleion fo,i—n) o« p(l—n/ear—n)pler—n /o)
Where:

- o means here ”is proportional to”,

- we note that p (e1—sn /0, Y1—sn) & p (1 [0),

- and that p(yp1—nN/0,E1N) =
p{y1—nN /51—}N )

Remark 2 it is worth noticing that without any add:-
tional difficulty it is possible to suppose that the process
is embedded in noise, thus taking into account thermal
noise, quantification noise, which was not so simple
with previous methods. In that case, one would only
write:

p(y1on [0,€15N, 815N ) X p(T14N /Y1)
XP(y1—>N /51—rN)

p(0/y1—n,e1—N, 21N ) =p(0 [y1—N,€1N)
p(e1—N [0, 51— N, Y1—sN ) X P (Z1—N [Y1—N)
xp(y1—n fe1—N)

xp(er—n [o) (6)

where the £,y are the observations including noise,
which is assumed to be stationary for sake of convini-
ence. We notice that it requires to be able to sample

from p(y1—n [e1—aN ).

The simulation algorithm could thus be summarized
as follows [4]:

1. Draw o(**Y) according to p (0' /yl_,N,e(l’LN).

2. Draw 6(1k+1) according to
p (61—+N /O'(k+1) ’ yl—vN)-

3. Goto 1.

Nevertheless in practice it is generaly impossible to
perform such an algorithm directly:

- in most cases, it is impossible to apply an ac-
cept/reject procedure [4] using (5), as it would require
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to determine an efficient generating density, so as to
ensure a good acceptation rate, and to evaluate analyt-
icaly the normalization constant of the likelihood.

- in most cases, one can not determine prior conjug-
ate densities, which would simplify the drawing proced-
ure. For example in the case where the €1, N are ud
Gaussian, one could choose ¢? ~Inv—x? (o, 8).

- due to the limited precision of computers small
values are rounded to zero, and the algorithm may not
converge. This often happens when we deal with joint
densities of large size vectors.

In order to circumvent all those problems, we
propose a combination of two MCMC, more pre-
cisely a product of two Metropolis-Hastings (M-H)
kernels [4], whose respective invariant densities are
the full conditional densities, p (o /y1—n,e1—n ) and
p(e1—nN /0, y1—n). This algorithm is no more a
Gibbs sampler (which nevertheless is a particular case
of product of specific M-H kernels). We use M-H based
on random walk [4] (ie a simple Metropolis algorithm),
that is we make the parameters evolve with random in-
crements: in what will follow, the scalar increment for
o will be named z and will be distributed according
to g, which must be symetric [4]. The vector incre-
ment for ¢;—,n will be U;_,n, distributed according
to qu which must be also symetric. (We notice that
we could make the '’ depend on the preceeding step).
This provides a general algorithm which is ensured to
work in all situations (under convergence conditions),
but which may not be computationaly efficient in par-
ticular cases, and thus would have to be adapted.

The algorithm can thus be summarized as follows:

1. Draw o} according to p(o) and egl)_,  conditionally to

oy,

(Initialization: ¢ =0)
1=t+4+1
Draw z* according to ¢z
Set 03 = o} +2*
Calculate o
o [ p(e0, v /o3 )p(o3)
= min 1, -——(;3——:—’—
p(£1—+N/°'1 )1”("'1)
Accept the value o3 with probability o.
If o3 is accepted then set
o) =03,

2. while(i<M)

3. ot =g

4. while(i<M’)




(Initialization: 1 = 0)
i=i+1
Draw Uy, 5 according to qu
% x* x
1N =6l n+ ULy
Calculate o
L Ern ] el )
’ P(yl—’N/E;—-—-yN )p(e;—yN/U(k+l) )
Accept 7%, v with probability .
If e}’ ,n is accepted then set

<

min [

* —
\ €1 N = €1 4N

(k+1) _ «
5. e, y=el N

6. go to 2.

One of the advantages of using the M-H kernels, is
that ratios of densities appear, which allow to avoid the
numerical problems discussed above.

Remark 3 one notices that in the case where M, M
are sufficiently high, so that the stationary regime is
reached, this would lead to a Gibbs sampler. Neverthe-
less as it will be shown in the next section, this is not
required, but the algorithm obtained in such a case is
no more a Gibbs sampler.

3. Convergence of the algorithm

We give sufficient conditions to ensure convergence
of this stochastic algorithm using Markov chains theory.
Let E be the state space of the Markov chain. We
assume E = E; x E, Is an open connected subset of
RNxR . Furthermore we use z1, y1 to denote elements
of E; and x5, y» to denote elements of E,. Let F =
F1 x F3 be the Borel o-field on E.

We make the following assumptions:

- m(dx) admits a stricly positive density = (dz) on
E with respect to the Lebesgue measure.

- w2 (dzi|z2) and 7y (dez| 1) admit densities
mij2 (21| z2) and 7o (22] 1) on their space with re-
spect to the Lebesgue measure.

- Yy € Ei q(=z1,y1|z2) (resp. Vay € E,
g (z2,y2|y1)) is stricly positive on Ey x E;(resp. Eq X
Ey

’)I‘he transition probability kernel P : E x F — [0, 1]
is in our case defined as follows. Let us first consider
the ’local’ transition kernels:

Py (z1,dyi| 22) = q(z1, y1] 22) o (21, 91| 22) dyt
+ [1—/q(xl,yllxz)a(m,yllxz)dyl] 8z, (dyr)

o

T(Iz z2)
where a(z1,y:1|22) is the probability of ac-
cepting the candidate y;  sampled accord-

ing to g¢(zg,y1|z2). In a zero-mean random
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walk setup a(=1,y1|22) =min(‘n‘12(yxlz‘2)

ﬂ’uz(ﬁll‘z)’l) if
my2 (21]22) g (x1,91]22) > 0 and 1 elsewhere.
Similarly

P, (z2,dyz| y1) = p (22, 42| 1) dy2 + r (22[ y1) 8z, (dy2)
The total transition kernel is thus equal to
P ((z1,72), (A1, A2))
= / / Py (z1,dy1| z2) P2 (22, dy2| 1)
A JAs

To establish that this Markov chain converges towards
the required posterior density = (2, z), it is sufficient
to show that P admits 7 as invariant density and that
P is m-irreducible and aperiodic.

- Under the above assumptions, V(z,4) € E x F
P (z,A) > 0, thus P is m-irreducible and aperiodic.

- 7 is invariant for P. Indeed,

[ [P (z1,dys|22) P; (22, dya|yn) 7 (21, 22) dorde
=[fP2 (z2,dy2|y1)
X fPl (x1,dy1|m‘2)7l'(171|1‘2)d.’[1] Tr(.’l,‘z)d.’l)2
= sz (.’L‘z,dyzl y1) 7T1|2 (dy1| xz)dmz
= sz (xz,dyz' y1) M@ﬂ (.’L‘g)dxz

7(z2)

=Tm (dyl)fpz (xz,dy2|y1)7r2|1 (.’Ezl yl)d.’ltz

= m1 (dy1) 721 (dy2| v1) = 7 (dys, dy2)

From m-irreducibility and aperiodicity one deduces
that,

P" (z,.) =7}l > 0¥z e FE

where [|.|| is the total variation norm. On the contrary
of what is claimed in many papers, one can not con-
clude about ergodicity of the Markov chain, because it
would require to establish in addition that P is Harris
reccurent. In many cases - when there is no measure-
theoretic pathology - irreducibility implies Harris re-
curence. However there exists yet no general results on
the convergence of hybrid samplers, and we have not
been able to establish this property rigorously. If that
property was true, then this Markov chain would be er-
godic, i.e. for any real-valued w—integrable function f
one would have

;1;2 (k) = /f(.r) 7 (dz) almost surely

4. Simulation

In order to compare the performance of our method
with performance of previous methods we have chosen
to follow [1]. The continuous process is thus assumed
to be Gaussian, but we notice that normality is not
required to perform the algorithm. One must only be
able to evaluate p (yi—n /e1— N ).




- The correlation matrix of the Gaussian process Is:

(Rl sy et mz = &P (:(_tiﬂ—> @

where the (¢;);-; _, are the sampling times.

- The perturbations are iid centered normal,
(in the simulation A (0, .07)) restricted to [-.5, +.5] in
order to place ourselves in a case similar to [1] and to
ensure the convergence of the algorithm.

- o has a noninformative prior, ie is distributed ac-
cording to the uniform law on [0, .3].

- the increment laws are A (0,.3) and multivariate
N (0,.31 N)- '

- the number of iterations for both Metropolis-
Hastings algorithms are 200.

- we performed the algorithm in two cases: 50 and
100 data available.

The results are good, and even better than those
obtained by [1] althought a small amount of data was
available.

With 50 data
T

3500 T T T
3000 “ p
2500+ '1 4
2000 4
1500 + “ 4
1000

500 -

5. Conclusion

In our paper, we propose an original and efficient
solution to a problem which is of interest in many ap-
plications, when data are not sampled at regular in-
tervals. This is a typical missing data problem that

we have solved in a Bayesian framework using MCMC: -

this avoids complex expectation evalution and often un-
tractable global optimisation encountered when using
the E-M algorithm and related versions. Our solution
allows one to estimate not only the density of the vari-
ance of the jitter, but also the densities of each of the
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With 100 data
4000 ; r T T
3500 - il W .
3000 4
it
2500 _‘ n
2000} I “ 4
l

1500} 4
1000 4

500 4

0
0.04 0.05 0.06 0.07 0.08 0.09 0.1

perturbation. We believe that the procedure is suffi-
ciently flexible to be applied to many situations met
in practice. Of course, MCMC techniques have many
other applications in statistical signal processing, see
[3] for an application to deconvolution.
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Abstract

We address the problems of modeling Doppler-shifted
wide-band Gaussian random processes and of estimating
the Doppler parameter from a finite series of discrete-time
samples. Relations between the continuous-time process,
the Doppler shift parameter, and the discrete-time process
obtained by sampling are established. Approximate ratio-
nal models are proposed. Various estimators are proposed
Jor Doppler parameter when the second-order statistics of
the original continuous-time random process are known.
The Cramér-Rao bound is derived. The estimators are com-
pared experimentally on synthetic Doppler-shifted data. We
also hint at some extensions of the method to non-stationary
processes and time-varying Doppler shifts.

1. Introduction

The Doppler-shift effect is well-known for narrow-band
signals emitted by moving sources (Fig. 1). In that case,
freshman’s physics tells us that a harmonic wave of fre-
quency wy emitted by a point source moving toward a fixed
receiver with speed v is observed with apparent frequency
w = (1 + M)wy, where M = v/c is the Mach number. In
this paper, we consider wide-band moving sources that are
modeled by continuous-time Gaussian random processes
with known statistics. We address the problems involved in
estimating the Doppler shift from samples of signals emit-
ted by such sources. The estimators proposed here are mo-
tivated by applications in acoustics, e.g., in environmental
sound monitoring, where wide-band moving sources are of-
ten encountered. For example, the maximum-likelihood es-
timator, or one of its approximations, can be used in a GLRT
for detection and classification of Doppler-shifted wide-
band processes given a dictionary of possible non-shifted
spectra.

*Christophe Couvreur is a Research Assistant of the Belgian National
Fund for Scientific Rescarch at Faculté Polytechnique de Mons, Mons.
Belgium.
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Figure 1. Source moving toward the receiver.

2. Mathematical formulation

Let z.(t) be a continuous-time Gaussian zero-mean sta-
tionary random process modeling the signal emitted by the
moving point source S and let y.(¢) be the signal observed
at the fixed receiver O (see. Fig. 1). For simplicity, we
consider the one-dimensional case of a source moving at a
constant speed v toward O. It can be shown that in the far
field y.(¢) is related to z.(t) by [5]

Ye(t) = ozc(at — d), 1)
where a = 1 + v/c is the Doppler shift factor, o is some
attenuation factor due to the propagation of the acoustic
wave, 4 is a propagation delay, and ¢ is the wave propa-
gation speed. Equation (1) is also valid for sources moving
away from the receiver: in that case v < 0 and, conse-
quently, @ < 1. It is straightforward to see that y.(t) is
also a Gaussian zero-mean stationary random process with
covariance function

Ry (1) = Blye(t)ye(t = 7)] = 0*Ra (a7),  (2)
where R, _(7) denotes the covariances function of the sta-
tionary process z.(t). Equivalently, the power spectral den-
sities (PSD) of the processes . (t) and y.(t) are related by

0'2 w

Sy (W) = =5 (=) 3)

074 &

where S; (w) and S, (w) denote the PSD of z.(t) and
Yy (t), respectively.

In practice, we only have access to sampled versions,
z[n] = z.(nTs) and y[n] = y.(nTs + &), n € N, of the
continuous-time processes z.(t) and y.(t); & is some arbi-
trary time instant, and wy = 27 /T is the radian sampling




frequency. Both discrete-time random processes are Gaus-
sian and zero-mean, with covariance sequences given by

Ro[k] = Ry (KT.),  Ry[k] = 0?Rq (0kTs). (4)

Their PSD’s are related to the PSD’s of their continuous-
time counterparts by

R~ Q+ 2knw
S =% D Sl )

S k=—o00

7'=m7ya

where Q € [—, 7] is the normalized radian frequency.

The effect of the Doppler shift can be viewed as a change
of sampling period with respect to the original signal z(t)
from T to aT. It is clear from (5) that the Nyquist con-
dition (non-aliasing) for y[n] is that z(t) must be band-
limited to W < ws/2c. If this condition holds, then we
have

o? , Q o? Q
Sy() = E_S””(E) = o7 zc(ai)- (6)
3. Rational Modeling

Let us assume that the PSD of z.(t) is rational (i.e., z.(t)

is the output of a linear filter excited by white Gaussian
noise),

: P(jw) "
Sa,- = Hz 2 = ‘——— ) 7
W) =n|He ()" =1\ 550 M
where P(s) and Q(s) are polynomials in s. Let
P
He(s) =+ (®)

k=1

be the partial fraction expansion H,_(s), where we have as-
sumed without loss of generality that all the poles of H;_(s)
are simple. Let us further assume that z.(t) is essentially
band-limited' to frequency W < ws/2c. Then, by the im-
pulse invariant method [6], it is easy to show that

S,(9) ~ no*T, |Ha(e?)|” ©)
with
H,(z) = ~_ A
a(2) = kZ T T (10)
=1

Equation (10) leads to an heuristically appealing inter-
pretation of the Doppler effect for rational random pro-
cesses in terms of pole displacements. Consider, for ex-
ample, the degenerate case where the poles in the s-plane
are purely imaginary, sy = jws, then, in the z-plane, the
Doppler effect rotate the poles on the unit circle by a fac-
tor . This interpretation is consistent with the analysis of
the Doppler effect for deterministic harmonic signals. It is

I'That is, all but a negligible fraction of its energy is contained in the
band [-W, W].
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interesting to note that, in the general case, the poles in the
z-plane move on logarithmic spirals, not on circles.

The rational modeling approach just introduced also sug-
gests an efficient way to artificially synthetize Doppler-
shifted processes with rational spectra. If a white Gaussian
sequence is used the input of a digital filter with transfert
fuction (10), it is straighforward to see that the output se-
quence of the filter will be Gaussian and have the desired
spectral shape. The scaling by o is trivial. This method al-
lows easy implementation of the synthetizer, cven for vary-
ing shift o, via the parallel form of the filter defined by (10).

4. Estimators of Doppler parameters

Lety = (y[0],%[1], ..., y[N—1])" be alength N sample
of the process y[n]. We address the problem of estimating
the Doppler parameters a and ¢ from y when the statistics
of z.(t) are known (i.e., either R, (7), S; (w), or a rational
model of S;(€2) is known).

Clearly, there are situations in which it will not be pos-
sible to identify the Doppler parameters, a trivial example
being the white noise case. An identifiability condition for
o and o from yc(t) is the 02 Ry, (a1) = 0" R, (o7) im-
plies implies & = o' and ¢ = ¢'. It can be shown that if
z(t) is of finite power the identifiability condition holds.
For the discrete process y[k], the identifiability condition
becomes R, (a,0)[k] = Ry(o',0")[k],Vk € N, or, alter-

nately, S, (Q; a,0) = 5y(Q;0/,0'), implies a = o' and
o=0'.

4.1. Maximum-likelihood estimator

A finite length vector y is realization of a Gaussian zero-
mean random variable with covariance matrix ¥ = 3, (6)

2,(0) = 0?5, (a) = 0 (ch(ali—j|T3)> (1))
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with 8 = {a, ¢}. Thus, estimating 6 given y can be viewed
as a structured covariance estimation problem. The covari-
ance matrix £(6) is linear in o2, but will generally be non-
linear in . )
The maximum-likelihood estimator 8y, minimizes [2]
L(6) = log |, (0)] + tr[E;l(H)S], (12)
where S = yy! is the sample covariance matrix. In general,
the minimization of L(#) is a,non-linear problem, and it is
necessary to resort to iterative methods. However, for large
N, the computational load involved by the matrix opera-
tions in the computation of (12) can be greatly reduced by
taking advantage of the Toeplitz structure of £, (6). It can
be shown [3] (see also [4]) that the minimization of L(#) is
asymptotically equivalent to the minimization of

N-1 2k
ok In(22E)
10g Sy (=3 0) + — =~ | » (13)
;;) N Sy (35 6)




where S, (Q;6) is the PSD of y[n] considered as a func-
tion of 8, In () = & Sa g y[k]e’™* is the periodogram
spectral estimate computed from y. Once Iy (25£) has been
computed (by FFT if N is power of 2), the evalution of
L(#) by (13) requires only O(N) operations. The mini-
mization of (13) can be viewed as the minimization of the
Itakura-Saito distance between the empirical spectrum and
the parametric model of the data. The ML estimator can
thus be interpreted as a “spectral matching” estimator based
on the Itakura-Saito distance. '

If an approximate value or a range for the Doppler shift «
is known, it is possible to obtain an approximate ML estima-
tor with a lower complexity. Consider the Taylor series ex-
pansion of ¥(#) around some value of @ = a. For exam-
ple, for v « c¢we have a = 1, justifying an expansion about
ap = 1. If we restrict the Taylor series expansion to the first
two terms, it is trivial algebra to show that 33, (6) can be ex-
pressed as a linear combination X,(6) = vA + ¢B of two
N x N Toeplitz matrices A = (a[i — j]) and B = (b[i — j]).
with

a[k] = ch (aokTs) - aob[k],
OR,, (akTs)
blk] = e pme )

and the reparameterization § = {v, ¢} where v = o2 and
¢ = o2a. Even with this linear approximation, the min-
imization of (12) is still a non-linear problem and still re-
quires an iterative solution, but a simpler one than the orig-
inal (see [1]).

4.2. Method of moments estimator

The iterative maximum-likelihood methods requires an
initial estimate of the parameters. The method of moments
(MoM) method can be used to provide such estimate. The
MoM estimate fyom is obtained by equating sample mo-
ments R, [k] of y with their theoretical values expressed as
functions of . Using the first two covariance lags yields

y[0]

R
ch (0) ’

Ry[l] - CA’-ﬁ/IoM}zmc (dMoMTs)-

FMoM (14)

0 = (15)
Equation (15) needs to be solved numerically, unless a
Taylor expension similar to that of the previous section is
used for R, (aT,). Note that using such a linear expan-
sion is equivalent to performing only the first iteration of
a Newton-Raphson algorithm for the solution of (15). The
existence of a solution to (15) is guaranteed by the “maxi-
mization at 0” property of covariance functions and of co-
variances sequences, if R, () is continuous and in L.
Note that the MoM method requires a stronger identifia-
bility condition than the one introduced earlier, i.e., that
R, (oT;) = R, (&'T) implies o = «'. If, in addition,
R, () (and, hence, R,[k] viewed as a function of a) is
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continuous and differentiable, the MoM estimate can be
shown to be consistent by Theorem 3.14. in [7].

To relax this strict identifiability condition, an alternate
moment-based estimate can be obtained by equating a set
of K moments, X' < N — 1, and then solving in the least-
square sense:

K-1 5
fLsMoM = argmgin Z HRy[k] - Ry(ﬁ)[k]“ . (16)
k=0

Under an identifiability condition for the first K lags, the
LSMoM estimator can be shown to be consistent (by The-
orem 3.14 in [7] again). From Parseval’s theorem, it is
not difficult to see that, for large K, (16) is equivalent to
minimization the L, distance between the theoretical PSD
Sy(€2; 9) and a windowed periodogram spectral estimate. If
the linear approximation of the covariance

Ry(6)[k] ~ valk] + ¢b[k] (17)
is used, we obtain a linear least-square problem. Equiva-
lently, linearization of the PSD .S, ({2; 8) could be used with
a Ly "spectral matching” criterion.

4.3. Rational modeling estimator

Assume that a rational model (AR or ARMA) is avail-
able for S, (), let pi, k = 1,. .., p be its poles. Further as-
sume that z[k] arise from a z.(¢) that is essentially bandlim-
ited. An ad-hoc estimator based on the rational modeling
approach can be obtained as follows. An AR and ARMA
model can be fitted to y with classical methods (e.g., Yule-
Walker). For ARMA models, only the AR part (poles) is
of importance. Let g, K = 1,...,p, be these poles. From
(10), it follows that they are related to the original poles by

alog pr
?

Pr e k=1,...,p. (18)

Minimization of

p
3™ || tog 2 — erlog pi|” (19)

k=1

with respect to &, which is a trivial linear problem, provides
the rational modeling estimator of the Doppler shift &gwm,
and drM can be taken equal to GpeMm. Note that, like the
ML and LSMoM estimates, the RM estimates can be inter-
preted as a “spectral matching” estimator with the particular
spectral distance defined by (19).

4.4. Cramér-Rao bound Ty
It can be shown that the Cramér-Rao bound (CRB) for
the estimation of & and o is given by

CRB(a) = 2[|®l} - N~ ®?]” @0

2 5
CRB(s) = o= Il CRB(a), @n




with @ = 5357 () Z2=()

If o is known, Whittle’s asymptotic version of the CRB
for o takes the form

1 (259 2
- N1 - da
CRB(a) x N o / ( Sy(ﬂ)) aa  (22)

-7

which has a nice intuitive interpretation. The CRB depends
on the sensitivity” of the PSD of y[n] to variations in a,
this sensitivity beeing weighted by the PSD itself (i.e., the
energy repartition in the spectral domain).

5. Preliminary results

In order to evaluate the performance of the proposed esti-
mators, we conducted several Monte-Carlo simulations. We
used a 4th order linear model for the continuous-time pro-
cess z(t), i.e.,

— 1
Hzc (3) = 10-17s413x10 4s34+7.02x10~-%s2+1.2x10~5s+1 "

The sampling frequency F was set equal to 40860 Hz. The
process was simulated via the rational-modeling approach
described in Sec. 3.

Monte-Carlo simulations have been performed in Mat-
lab, with 1000 independent runs for each estimator. Figure 2
summarizes the results obtained for the MoM estimator, the
rational-modeling estimator, and the LSMoM estimator, of
the Doppler shift . For the rational-modeling method, the
least-square modified Yule-Walker algorithm [7] has been
used to compute the poles of the rational model. Five co-
variances lags were used in the LSMoM method with the
linearization of the covariance (17) about &g = 1. The
ML estimator suffered from numerical convergence prob-
lems and its results are not included here.

Of the three estimators, the linearized LSMoM estimator
has the lowest computational cost, followed by the rational-
modeling estimator, and the MoM estimator (because of the
numerical resolution of (15)). For samples of moderate and
large size N, the rational modeling estimator of the Dopple
shift alpha outperforms the two moment-based estimators
which have very close variances. For the estimation of
the gain o, all three methods offered very similar perfor-
mances. More complete results, including performance on
real Doppler-shifted acoustic data will be presented at the
conference.

6. Concluding remarks

Various estimators of the Doppler parameters for
Doppler-shifted Gaussian random processes have been pro-
posed. All these estimator rely on a stationarity assumption
of the Gaussian process. In the context of Doppler-shift
for moving sources, this amounts to assuming that the wave
source is moving at a constant radial toward (or away from)
the fixed receiver. If the source is not moving at constant
radial speed, the random process y(t) is no longer station-
ary. The approach proposed here can be extended to treat

Variance
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Figure 2. Variance of the estimators of the
Doppler shift a.

this case. For example, an adaptive ARMA modeling tech-
nique could be easily combined with the rational model-
ing approach to track the evolution of the Doppler param-
eters in time. Likewise, the ML and moment-based meth-
ods (or their “spectral matching” equivalent) could be ap-
plied to a sliding window of adequate length so as to insure
quasi-stationary of the signal. The resulting estimates of the
Doppler shift a(t) and gain o(t) could be further smoothed
by using a priori knowledge on the movement of the source,
if is such knowledge is available.

Another approach would be to use a non-stationary rep-
resentation of the signal. An appealing candidate for this
non-stationary representation is the wavelet transform (as
suggested in [8]): moving noise sources result in dilatations
of the time axis and propagation delays, which are exactly
the operations (translation and dilatation) used in the defi-
nition of the wavelet transform.
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Abstract

This paper is concerned with the estimation of mul-
tiple constant velocity target trajectories in a low SNR
environment. Each target trajectory is characterised by
the initial position and velocity, which are to be esti-
mated. A major difficulty is that the target amplitudes
are unknown and will in general be time varying. The
approach in this paper is to model the target amplitude
as an autoregressive (AR) process. A mazimum likeli-
hood estimator is derived for the parameters of the AR
process and the unknown target position and velocity
using the ezpectation conditional mazimisation (ECM)
algorithm.

1. Introduction

This paper is concerned with the estimation of the
trajectories of multiple constant velocity targets ob-
served using an optical sensor, recording 2-D images.
In a low SNR environment, target locations cannot be
estimated using a single image, so a number of frames
must be recorded and processed. At the end of this
observation interval estimates of all target trajectories
are obtained.

Previously the single target problem has been for-
mulated in [1, 2, 3, 4] as either a maximum likelihood
estimation problem, or frequency domain matched fil-
ter problem. The amplitude is either assumed constant
[1, 2, 3], or completely unknown and therefore uncorre-

*This work was supported by the Co-operative Research Cen-
tre for Sensor Signal and Information Processing (CSSIP). A.
Logothetis is supported by the Australian Telecommunications
and Electronics Research Board (ATERB)
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lated from pixel to pixel [4]. In addition, a discrete set
of candidate target velocities is tested, resulting in per-
formance loss in the presence of a mismatch between
assumed and actual target velocity.

In general the target amplitude is time varying. Re-
cently in [5] a first order model is proposed for the time
varying amplitude, but the mean, variance and corre-
lation from one time to the next are assumed known
a-priori. A numerical optimisation procedure is used
to obtain continuous estimates of target position and
velocity, overcoming the problem of mismatch.

This paper extends the formulation in [5] to account
for multiple targets. The time varying amplitudes of
the targets are modeled as independent first order au-
toregressive (AR) process, similar to [5], but the AR
process parameters are assumed unknown a-priori. A
maximum likelihood estimator, using the expectation
conditional maximisation (ECM) algorithm, is derived
to simultaneously estimate the parameters of the AR
processes and the unknown target positions and veloc-
ities.

2. Problem Formulation

2.1. Signal Model

There are N constant velocity targets, with time
varying amplitude. For simplicity, N is assumed known
a-priori, but in practice would also need to be esti-
mated. The time varying amplitude for the n'? target,
denoted £(*) is modeled as a first order AR series, given
by

€M) =a™ (k) = d™(E (k-1)~a (E-1) 2 (k)
(1)




where a(® (k) = a(™,Vk is the constant mean am-
plitude of the n'* source (target). The v n €
{1,...,N} are statistically independent zero-mean
white Gaussian sequences with variances o‘Z(,,), so the
target amplitude series are independent. The imter-
frame amplitude correlation is given by dm),

The measurements are images recorded using an
optical sensor array comsisting of C' x D resolution
cells (pixels) of dimension Az x Ay. The measure-
ment at time k is Y (k) € RE*P, the set of observa-
tions recorded in all cells at time k. The signal from
a point source is spread according to a point spread
function, approximated here by a 2-D Gaussian. If
(:c(()"), yg"), o, vz(,")) represents the initial position (in
¢ and y) and initial velocity (in # and y) for the nth
source, then the signal in cell 7, j at time k due to source

nis h,(;)(k)f(")(k), where

(n) (") _ sA2)2
exp (_ (zg" + kTvs ' —iAx) ) ‘

2
202

2moz0y

exp (—-

and o, and oy are characteristic for the sensor and
assumed known, and T is the sampling interval.

The measurement in cell 4, j at time k is given by the
weighted sum of the time varying amplitudes embedded
in white noise, given by

(n)
hi; (k)

() + kT - jAy)?
202 )
Yy

N
vii (k) = 3 h{P (R)EM) (k) + e (k) (3)

n=1

where e;;(k) are statistically independent zero-mean
white Gaussian processes with known variance o2. Eqgs
(1) and (3) can be written in a state space form as
follows

z(k) = Az(k-1)+ Bo(k)
z(k) = G(k)z(k) +w(k) (4)
where
(k) =vm@Wm“wWw»
&) (k)
z™M(k) = (E(")(k—l))
a™) (k)
A = diag(AD,...,AM)
d®) 0 1-d™ 0
A = ( 1 0 0 0)
0 0 1 0
B = diag(BY,...,BM)
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1
B™ = 0
£)

o(k) = vec (v(l)(k), o™ (k))

v™(k) ~ N(0,00m)

z(k) vec(Y (k))

Y (k) (335 (k)

Gy = (vec(HD(®)),.., vec(H™())) B
HOE) = [ (k)]

w(k) = vec(E(k))

E(k) = [e;(k)] (5)

and z(k) is of dimension 3N x 1, Ais 3N x 3N, B is
3N xN,v(k)is Nx1,z(k)is CDx1, G(k) is CDx3N
and w(k) is CD x 1.

The total number of images (observations) recorded
is K, and the observation sequence (z(1),...,z(K)) is
denoted Zg. The state sequence (z(1),...,z(K)) is
denoted Xk .

2.2. Estimation Objective

Let 8 = (01,02, ...,0s) € © denote the true model,
such that 0; = (020, ..., 0%w)), b2 = (dD,...,d"N))

and 63 to Bs represent (mgl),ygl),v,(;l),vl(,l)) to

(ng),y(()N),v,(cN),vg(,N)). The value of S depends on
how the parameter space © C R®Y is partitioned, and
Se{s,...,4AN+2}.

Given a realization {2(1),...,z(K)}, of the stochas-
tic model of (4), the objective is to obtain the maxi-
mum likelihood (ML) estimate

ML

£ arg maxp(Zx|6) (6)
where p(Zk|0) denotes the marginal density of the ob-
servations Zx conditioned on the model 8.

3. Proposed Algorithm

The ECM algorithm [6] is used to obtain 6%, meet-
ing the objective in Section 2.2. As a by-product of the
ECM, MAP estimates of the states z(k) are also ob-
tained.

The ECM algorithm is an extension of the expec-
tation maximisation (EM) algorithm [7] and is an it-
erative method of extracting the mode of the likeli-
hood function. From an initial estimate 8% € ©
a sequence of estimates {#{'}} are generated. Let
F = {f(8) :s=1,...,5} be the set of S constraint




functions of , with f, () = (01,...,05-1,0541,...,0s).
At the (I4+1)** iteration (“pass”) of the ECM algorithm
we perform the following steps:

E-step: Just like the EM, we evaluate the conditional
expectation of the log likelihood of the complete data:

Q0,61 = E{lnp(Zx, Xk |0)| 2k, 01}, (7)

Here p is the density function of the complete data
Mg = (Zg, Xk) and 81 is the parameter estimate at
the I*! iteration.

CM-steps: For s = 1,...,S find 6U+5/5} that max-
imises Q(6,81}) (as a function of ) subject to the
constraint f,(8) = f,(#1H(-1/51) je

Q(9{1+s/5},9{l}) > Q(g’g{l})’

for all 6 € © for which f,(9) = f,(60+¢-1/s1y  (8)

where

pli+s/Sy — (0§z+1}17 9{t+1} gl+1}, g{l}

coyVse1

05

The appealing property of the ECM algorithm
is that likelihoods increase monotonically, i.e.,
p(Zk 0111} > p(Zk |91) with equality holding at the
ML estimate, provided the set F' of constraints spans
the parameter space [6]. The rate of convergence of
this algorithm is studied in [8].

3.1. E-Step
The evaluation of Q(B,O{’} ) requires the density

function of the complete data, p(Zk, Xk |0). From the
model in (4)

K
HP(Z(k)lm(k): 9) -

K
[ p(=(®)l=(k - 1),0)
Kk_; D
= TTIIIIpwi(®)e(),0)-
k=1i=1j=1
K N
I IT p(=™ (k) [z (k - 1),6)
k=1n=1

)

where the conditional densities of z(®)(k) and y;; (k)
are Gaussian and obtained from (1) and (3), and the
definition of z(®)(k). Taking the conditional expec-

tation of the log of (9) gives Q(#,6%"}). This re-
quires the computation of z(k) } and z(k)z (k) &

(where (-){} 2 E{-|Zk,01}) which are obtained us-

ing a Kalman smoother [9]. Due to space constraints,
Q(8,61) is not shown in full in this summary.
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3.2. CM-Steps

The constrained maximisation of @(6, 4{}) consists
of the following S steps:

CM-Step 1: Calculate §1+1/5} using (8). This

2 A1} N. A closed

u(")
form solution is obtained for each of the aﬁ(n) {141}

by differentiating Q(1'+1/5} 611}) with respect to

02(» and setting the derivative equal to zero.

step determines o ,n=1,...,

CM-Step 2: Calculate §1+2/5} using (8). This
step determines d(”){lﬂ} =1,...,N. A closed

form solution for each d(”){ i is obtained in the
same way as for CM-Step 1.

CM-Steps 3 to S: Calculate gli+s/5} 5 =

., S using (8). In this step the target position
and velocity parameters are updated. In general
there will be no closed form solution, so the s*™®
CM-step will involve some form of iterative search
in a parameter space © C ©. The dimensional-
ity of © is determined by the dimensionality of ,,
and is less than that of ©. In this paper the param-
eter space is partitioned such that § = N + 2 and
each f;,,5 =3,..., S corresponds to the initial po-
sition and velocity parameters for one target. This
definition means each parameter update requires a
4-dimensional search, which is implemented using
a gradient descent technique. This results in more
complex implementation, but faster convergence,
than if each §, corresponded to a single position
or velocity parameter.

4. Simulation

The procedure has been implemented for the fol-
lowing scenario: The measurement sensor consists of
C x D = 20 x 20 resolution cells of dimension Az =
Ay = 1cell and 0, = oy = 0.6, with a measurement
noise variance of 02 = 1.0. The total number of frames
processed is K = 100. There are N = 3 targets mov-
ing through the field of view, with amplitude statistics,
inital positions and constant velocities as given in Ta-
ble 1. For these trajectories there will be a number of
frames for which there is signal from more than one
target in some cells. The approximate average SNRs
for the cells in which the targets are located are 1.5 dB,
0.6 dB, and 1.8 dB respectively.

The ECM algorithm was initialised randomly
around the true position and velocity parameters, and
with a(™® = 0.0, (73(,,) = 0.25 and d™) = 0.0. The esti-
mated amplitude statistics and target initial positions




n || «® | o2, | d™ :cgn) ™ o | ol

1] 25 ]500[07] 12 | 1.35 [0.17 | 0.16
2 3.0 | 0.00 | 1.0 | 3.05 | 12.55 ] 0.14 | -0.05
3120 | 800 | 0.0 |10.00 ] 16.50 | 0.0 | -0.15

Table 1. True target parameters

and velocities obtained from a single run are given in
Table 2. The recovered trajectories, along with the
true trajectories are shown in Figure 1.

(o [a® [ 62w [ 47 [&0® [ 6™ 6™ | %"

1278 534 076 1.17 [ 1.30 | 0.17 | 0.16

2298030 |0.15| 3.21 | 12.35 | 0.14 | -0.05

3 1.67 | 9.45 | 0.05 | 9.96 | 16.51 | 0.00 | -0.15

Table 2. Estimated target parameters

The target amplitude parameters and the position
and velocity parameters are recovered accurately, even
for low SNR targets with crossing trajectories. The
correlation (d) for target 2 is difficult to recover since
a constant amplitude target can be represented by any
d, with o2 = 0.

The rate of convergence of the ECM algorithm de-
teriorates as the initialisation of position and velocity
parameters moves further from the true values. Some
form of grid search is required to provide adequate ini-
tialisation. The rate of convergence also deteriorates as
the SNR decreases. For this example about 30 passes
of the ECM algorithm were required.

5. Conclusion

This paper presents a technique to estimate the tra-
jectories of multiple constant velocity targets with time
varying amplitudes, observed with an optical sensor.
The ECM algorithm is used to obtain the ML estimate
of the target trajectories and MAP estimates of target
amplitudes. The technique has been applied success-
fully to crossing targets in low SNR conditions.
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ABSTRACT

Estimation of parametric input-output (10) infinite im-
pulse response (IIR) transfer function is considered. Some
of the desirable properties of any approach to this prob-
lem are: unimodality of the performance surface, consis-
tent identification in the sufficient-order case, and stability
of the fitted model under undermodeling. Some of the well-
known approaches fail to satisfy one or more of these prop-
erties. The time-domatn equation error method (EEM)
yields a unimodal performance surface, biased estimates
in colored noise and sufficient-order case, and stable fit-
ted models under undermodeling if the input is autoregres-
stve. In this paper we propose a frequency-domain solution
to the least-squares equation error identification problem
using the power spectrum and the cross-spectrum of the
IO data to estimate the IO parametric transfer function.
The proposed approach is shown to yield a unimodal per-
formance surface, consistent identification in colored noise
and sufficient-order case, and stable fitted models under
undermodeling for arbitrary stationary inputs so long as
they are persistently ezciting of sufficiently high order.

1 Introduction
Consider the following widely used input-output linear
system model:

¥(t) = H(g " )u(t) + »(t) (1-1)

where {u(t)} is the measured input sequence, # is discrete-
time, {y(¢)} is the noisy output, and {v()} is a measure-
ment noise (disturbance) sequence. With ¢! denoting
the backward-shift operator (i.e. ¢~ u(t) = u(t — 1)), the
linear system H(g™') represents an IIR (infinite impulse
response) system:

H(g™) = ) i)™

i=0

(1-2)

Given an input-output record {u(t),y(¢), t = 1,2,---},
but the underlying true system model H (q_l) unknown,
it is of much interest in signal processing, communications
and control applications to fit a rational function model

G(q_l) — B(q_l) _ Z?:bo big™*
COAeY) 1+ Y g

This work was supported by the National Science Founda-
tion under Grant ECS-9504878.

(1-3)
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to given input-output record [1]-[6],[8]. A wide variety of
approaches exist [1],[4],[5],[8].

In any model fitting and parameter estimation prob-
lem, key issues influencing the choice of the approach are
(1],[4],[5],[8]:

(i) Global Convergence: Unimodality of the cost func-
tion. Does there exist a unique global asymptotic
convergence point? For instance, the prediction error
method (PEM) and the output error method (OEM)
[4],[5] do not have a unimodal cost function, in gen-
eral, whereas the equation error method (EEM) [1],
the Steiglitz-McBride method (SMM), and the instru-
mental variable method (IVM) [4],[5],[8] all have a
unique global asymptotic convergence point.

(i) Consistency: If the model set(i.e. the set from which
the fitted model is selected) contains the true system
(the so-called sufficient order case), does the fitted
model asymptotically converge to the true model? Ig-
noring the lack of unimodality, PEM is consistent un-
der a broad class of conditions [4],[5] and so is IVM,
but SMM and OEM are so only for white measure-
ment noise and EEM (as modified in [1]) has similar
limitations.

Statistical Efficiency: What is the variance (and
bias) of the fitted parameters? If it converges to the
correct solution, PEM is known to yield the smallest
variance [4)],[5].

Reduced-Order Modeling (Undermodeling): When
the true system does not belong to the model set (for
instance, suppose that H(g™') is not a rational func-
tion), it is meaningless to talk of consistency. From
a practical viewpoint, a key issue now is if the fit-
ted model is stable like the underlying true model?
It turns out that only EEM leads to a reduced-order
stable model provided that the input {u(t)} is an AR
process. Indeed, it is noted in [1] that “... if the input
can not be ascertained autoregressive, equation error
methods should perhaps not be used.”

(i)

(iv)

The main objective of this paper is to provide a
frequency-domain solution to the problem of equation
error (least-squares) system identification using spectral
analysis. The proposed method is shown to lead to a uni-
modal performance surface, consistent identification in col-




ored noise and sufficient-order case, and stable fitted mod-
els under undermodeling for arbitrary stationary inputs so
long as they are persistently exciting of sufficiently high
order.

2 Model Assumptions

We impose the following conditions on (1-1):

(AS1) {u(t)} and {y(t)} are zero-mean and jointly sta-
tionary. The power spectral density Suu(e’*) of
{u(2)} is > 0 for almost all w € [0, 7].

(AS2) The true system transfer function H (¢71) is
causal and stable. Therefore, Y oo h*(3) < co.

(AS3) The noise sequence {v(t)} is sero-mean, station-
ary and independent of {u(t)}.

(AS4) The following summability conditions hold true:

Y TGz Taes)l < 00,

T Th=1=—R

for each j = 2,---,k — 1 and each k =
2,3,--- where zi(t) € {y(t),u(t),»(t)} and
Criogzn (1, Th—1) is the k-th order joint
cumulant of the random variables {z:(t +
1),y zh-1(t + -1 ), 20(8)}-

Let the vector of unknown parameter be given by

6 =[a --- b, ] . (2-1)

n, bo -
3 A Frequency-Domain Solution

Consider the cross-spectral density

o0

Spu(w) = Y, B{y(t+kyu(®)}e "

k=—oco

(3-1)

It then follows easily that

Syu(w) .
Suu(w)

The basic approach to model parameter estimation con-
sists of two steps. First obtain a consistent estimator
H(e'™) of H(e'™) via comsistent estimators Syu(w) and
§w(w) of Syu(w) and Suu(w), respectively, based upon the
input-output record {u(t),¥(t), t =1,2,---,T}. Next es-
timate the system parameters using the estimated transfer
function matrix as “data.”

H(e) = H(g " qme-iu = (3-2)

3.1 Transfer Function Estimator and Its
Statistics

This involves little more than estimation of cross-
spectrum between {y(¢)} and {u(t)}, and of power spec-
trum of {u(t)}. Numerous techniques are available for this
purpose; see [7] and references therein. We will follow the
approach of smoothing in frequency domain (7, Sec. 7.4).
Given a record of length T, let Y(w) denote the DFT of
{y(t), 1<t < T} given by

T-1
Y(ws) = ) 9(t+ 1)exp(—jwat) (3-3)

t=0
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where

wr = w7k, (3-4)

Similarly define U(ws).
Given the above DFT’s, following [7, Sec. 7.4] we define
the cross- and auto-spectrum estimators as

T-1
S(k) = 2 3 WD (ko )Y (@n-2)0 " (wh-s) (35)

and

71

“~ 2 *

Suu(k) = _1; ; W) (wh— s )U (wima)U *(wi—s) (3 —6)
for 1 < k < T — 1, where the scalar weighting function
W(T)(a) is given by

Wa) = By' Y W (B7'[a+2xi))

i=—o0

(3-7

such that W(8), —0 < B < oo, is real-valued, even,
of bounded variation satisfying f:; wW(@)d8 = 1 and

[, IW(B)|dB < oo [7, Secs. 5.6 and 7.4]. It is conve-

nient to take W(8) = 0 for |8| > 2x and W(B) = (am)?
for |8| < 2x. In this case (3-5) involves uniform weighting
of the 2B2T + 1 cross-periodogram ordinates whose fre-
quencies fall in the interval (wx — 27 Bz, ws +27Br). Thus
(3-5) reduces to

- 1 <X .
O Y Y(@r-i)U (wr-s),  (3-8)
‘=—m1!

where mp = BrT. Similar modification holds for (3-6).
Let us choose Br to be such that as T' — oo, we have
Br — 0 and BrT — oo. Let ki(T) with T = 1,2, - be
a sequence of integers such that limr.oki(T)/T = fi, 2
fixed frequency (in Hz).

In light of (3-8) define a coarser frequency grid:

2zl _ 2xl(2mz +1) _ 2xl(2BrT +1)
Ly T - T

with I = 0,1,---,Lp — 1 where Ly = L'.T::_-}-TJ Using
the estimated spectra we have an estimator of the system
transfer function at frequency wi (s in [7, Chapter 8])

(3-9)

H(e*) = 55 (k)Syu(k) (3-10)

provided that s (k) exists. If Szl(wk) exists, then it
follows from [7, Thm. 8.11.1] that

limT_.m E(eiz*f) = limT—N:c §;1} (k(T))gﬂu(k(T))

= H(e*') w.pil (3—11)

where limr o0 k(T)/T = f. Convergence in (3-11) is uni-
form in f. Finally, by the asymptotic independence of the
periodogram and cross-periodogram on the grid (3-4) for




0 < k < T/2 (see also [7, Chap. 7)), it follows that I?(ej“'")
for k = l(2mr 4+ 1), 1 =0,1,---,(Lr/2) — 1, are (asymp-
totically) independent. It follows from [7, Thm. 8.8.1] that
H(evw) for k = U(2mg + 1), | = 0,1,---,(L2/2) — 1,
are (asymptotically) jointly complex (circularly symmet-
ric) Gaussian such that

limre Ar cov (?I(ej“"'),ﬁ(ej“"))

Syy(wr) |Syu(“’k)|2 2
= 1 — =
Suuan) |1 7 Slwn)Sunlon)| = )
(3-12)
im0 Ar cov (I?(ej""'), H* (el )) =0, (3-13)
where
Ar = BrT = 2BrT (if (3-8) is used),

2r f_‘:o W2(a)da

(3 - 14)
and cov{X,Y} = E{XY*}~E{X}E{Y"}. Thus, H(e/“*)
on the coarse grid (3-9) is asymptotically a complex Gaus-
sian (in the sense of [7, Sec. 4.2]) random variable, indepen-
dent at distinct frequencies on the coarse grid over (0, =),
with the covariance structure (3-12).

3.2 An Equation Error Formulation
It follows from the definition of G(&’“) (cf. (1-3) ) that

ng ny
—ZG(ej“")a;e”j“'"i + Zb;e—j""‘i = G(“*)
i=1 i=0

(3-15)
for any wi. We rewrite (3-15) after replacing G(e’“*) with
the true transfer function estimate H(e/*) (see (3-10)),
as

Nng ny
— Z ﬁ(e""’l Je T a; Z e TIWaty — f[(e""").

i=1 i=0

(3-16)

Using frequencies wx = 2m(k — 1)/Lr for 0 < k < L =
(Lx/2) — 1, (3-16) may be rewritten in a matrix-equation
form and a least-squares solution can be found, as in [3]
(but in a different context). One may also wish to split (3-
16) into its real and imaginary parts and then solve it in
order to preserve the real-valued nature of the parameters
(see [3)).

The above least-squares formulation is equivalent to the
following formulation. Choose § to minimize the cost

- )
— i Jwi. g\ H(d91y _ Jwy, ‘
Ba(6) = 4 lz_; ’A(e ;0)B () — B(;0)
(3—17)
where
ny
B(e™150) = ) bi(0)e ™, (3-18)
i=0
A(50) = 14 Y ai(f)e, (3 - 19)
i=1
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In order to deduce some desirable theoretical properties it
will be convenient to work with (3-17) in the rest of the
paper.

Lemma 1. Under (AS1)-(AS4), imz .o Jir(8) “2*
J10(8) uniformly in 8 for § € O¢, any compact set, where

1
heo6) = 5=

|A(e’;0)H(e™) — B(e™;8)|" dw .
B (3 — 20)
Proof: By [7, Thm. 8.11.1], convergence in (3-11) is uni-
form in f. In particular, for w; on the grid (3-9), given any
€ > 0 there exists an integer N(¢) such that
Iﬁ(ej"") - H(ej"")l <e wp.l (3-21)
uniformly in w; for T > N(¢). Moreover, by [13, Prop.
1.2.16] and (3-21), we also have
<e w.p.l

1E 7 = 7 (3-22)

uniformly in w; for T > N(¢). Consider
Dy(6) = |A(™1;0)H(’) — B(e'™;0)?
—|A(e“;8)H(7) — B(e7™;0))?
= 140 [ B - |H()P]
TA(;0)B" (;0) [H () - Be™ )
+ 4% 0)B(0) [B(e) - B
(3 - 23)

By compactness of ©¢ and continuity of A(e‘j“";e) and
B(e™?“+;0) in 9 as well as in w;, we have

wy ESEI_I_)-,;,W] P seugc ”A(eim;a)” <M< oo (3-24)
and
welom] 6e6g IBEO| <M<,

(3 —25)
Therefore, by (3-21)-(3-25), given any e (= 3M?¢) > 0,
there exists an integer N(e;) such that

[D(f)| < &1 w.p.l VB E€EB¢, Vuw, VT > N(e1).
(3 - 26)
Now define
2.
7 i 2 e jw iu. gy|?
Tix(0) = 1 ; |A(e™; 0) B (™) — B(e™1;0)|.
(3 - 27)
Using (3-17), (3-26) and (3-27) it follows that
2
|z (8) - T1x(8)| < y ;X-O: |Di(8)] < &1 " w.p.1
- (3 — 28)




V0 € ©¢ and VT > N{(e1). Finally, for large Ly as the fre-
quency spacing becomes finer and finer, using the integral
approximation to the summation in (3-27) it follows that

s Tir(0) = 2 [ A 50)H() - B0
]

- 51; |A(;0)H(e) — B(e™;0)| dw = Tuea(6).
- (3 —29)
The desired result then follows from (3-28) and (3-29). O

4 Convergence Analysis
Define

Z)TT” = arg {mineJi ()} (¢-1)
and (1)
) = arg {mingJ1(6)}. (¢-2)

Using Lemma 1 and some standard arguments we can es-
tablish Theorem 1.

Theorem 1. Under (AS1)-(AS4),

5(;) w.é.l D(l)

lim T 00
where

P = {0

Proof: Mimic the proof of Theorem 1 in [11] using Lemma
1. Note that the convergence to the set DM s to be in-
terpreted in the sense of Ljung [5, p. 215]. O

The properties of 7*) have been studied in [9]. First we
need some definitions.
Def. Sufficient Order Model Set: The true model
H(g™") is of the type (1-3) such that the true model orders
nao and nyo satisfy min(na — nao,me — Mbo) > 0. @
Def. Reduced Order Model Set (Undermodeling):
Either the true model H(g™!)is not of the type (1-3), or it
is but the true model orders nao and nso satisfy min{n, —
Na0, b —Mpo) < 0. @

It has been shown in [9] that under the sufficient order
case, D{1) equals the set

D) = {0 |B(g™:0)/A(¢7};0) = H(¢™")}-
(4-9)

Under undermodeling (reduced order case), by [9],
A(q"l;bﬂ)) is minimum-phase; hence the fitted model
6(q_1) = B(q"l;a(l))/A(q"l;a(l)) is stable. Moreover,
under undermodeling, ¢ RE" unique (i.e. D) is & single-
ton), and Jm,(a(l)) > 0.

Using the above results from [9] and Theorem 1, the

following result is immediate.
Theorem 2. Under (AS1)-(AS4) and undermodeling,

w.p.lt —=(1)
gy "2 g

Jioo(8) = Jm(?o"”)}. (4—3)

umT—ooo
where 8" is unique and is given by (4-2). Under (AS1)-
(AS4) and sufficient order modeling,

.p.1

limT—ooolo\(;) we D(’a).

If min(na — mao, n6 — neo) = 0, then D(#9) is a singleton.
®
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5 Conclusions

A frequency-domain solution to the least-squares equa-
tion error system identification problem was considered us-
ing the power spectrum and the cross-spectrum of the IO
data to estimate the IO parametric transfer function. The
proposed approach was shown to yield a unimodal per-
formance surface, consistent identification in colored noise
and sufficient-order case, and stable fitted models under
undermodeling for arbitrary stationary inputs so long as
they are persistently exciting of sufficiently high order.
This is unlike quite a few existing approaches, such as the
prediction error method, the output error method and and
the instrumental variable method.
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Abstract

The rank selection problem of a multichannel data
covariance matriz is addressed by the Bayestan method-
ology. A mazimum a posteriori solution is derived, and
a bootstrap technique for ils implementation proposed.
Our rule is tested on simulated sensor array data that
represent random signals embedded in white Gaussian
noise. The tests include comparisons with the pop-
ular AIC and MDL criteria. The results show that
the Bayesian rule outperforms them, particularly for
low signal-to-noise ratios and small direction-of-arrival
separations.

1. Introduction

In many signal processing applications, the princi-
ple of rank reduction plays an important role [4]. In
sensor array processing it is often applied to determine
the number of signals that arrive at an array using a
finite set of observed data vectors. The rank reduc-
tion is practically a model selection problem, and as
such, in recent years, has been addressed by exploiting
information theoretic criteria [1], [6]-[7].

In this paper, we examine the same problem and
propose a maximum a posteriori (MAP) solution that
is in form similar to the well known selection rules of
Akaike (AIC) and Rissanen (MDL) [5]. Our rule has
a different penalty for overparameterization, and un-
like the AIC and MDL, the penalty is determined from
the observed data. It contains terms that include co-
variance matrices of the estimated model parameters.
To estimate these matrices, we apply a bootstrap tech-
nique as proposed in [3]. Our rank selection procedure

*This work was supported by the National Science Founda-
tion under Award No. MIP-9506743.
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has been tested by computer simulations and compared
to the AIC and MDL.

2. Problem Statement

We formulate the problem using standard assump-
tions and the notation from [5]. Namely, a set of p x 1
complex data vectors x(t), ¢t = 1,2, ..., N, are observed,
where

x(t) = As(t) + n(2). 1)

Here, A is a p x m (p > m) complex matrix of full
rank whose columns are associated with different sig-
nals and are parameterized by unknown signal param-
eters, and s(t) is an m x 1 random complex zero mean
vector whose elements are the waveforms of the m sig-
nals. The term n(t) denotes a p x 1 complex noise
vector, which is a realization of a stationary and er-
godic Gaussian process with zero mean and covariance
matrix E(n(t)n¥ (t)) = 02I. The noise and the signals
are independent.

The covariance matrix of the data can be expressed

as
R=V 40’1 (2)
where ¥ is the signal covariance matrix given by
¥ = ASA¥ (3)

with S being defined by S = E(s(t)s (¢)). Since A isa
full column rank matrix and S is by assumption nonsin-
gular, the rank of ¥ is equal to m. On the other hand,
the rank of R is p, and its (p — m) smallest eigenvalues
are equal to o2, Thus, if we knew R, by observing its
eigenvalues we could directly find the number of signals
in the data. However, R is almost never available in
practical applications, but instead, is estimated from
the observed data vectors. To determine the number
of signals based on the eigenvalues of the estimated R,




R, is not an easy task because the smallest eigenvalues
of R are usually not easily distinguished from the re-
maining eigenvalues. Our objective is to examine this
problem and determine the rank of ¥ from the esti-
mated matrix R.

3. Criterion for Rank Reduction

As mentioned before, the rank reduction has been
addressed by several authors who used the information
theoretic criteria AIC and MDL [5]-[7]. Here, we pro-
pose a different approach, which is based on the MAP
criterion. We assume that the rank k can take one of
the ¢ values, k = 1,2,..,q, where ¢ < p. For each k
we have a parametric model, which is denoted by M.
The model M; is described by the k largest eigenvalues
of R, M, 1=1,2, ..., k, their associated eigenvectors, i,
and the noise variance &3.

Since our objective is to find the rank that has the
maximum a posteriori probability, our criterion can be
expressed as

kE=arg mfx{p(M‘klx(l), x(2),--x(N))} (4)

where p(My|x(1),x(2),--,x(N)) is the a posteri-
ori probability of the model given the data records
x(1),x(2), -+, x(N). If all the rank hypotheses are a
priori equally probable, the criterion (4) becomes,

E=arg ml;ax{f(x(l),x(2), o x(N) MY (5)

where f(x(1),x(2), - - -, X(N)| M) is the marginal den-
sity of the data given the model M. The marginal
density is obtained from

f(x(l)’ x(2)7 M) x(N)'Mk)

- /@ Fx(1),%(2), - -+, X(V) |8k, Mi) F(O1 | M )84
) (6)

where @, is the parameter space of the k-th model,
and f(8x|Mz) is the a priori density of the model pa-
rameters.

We can show that the criterion (5) can be approxi-
mately expressed by [2] '

k= argmkin{—ln F(x(1),x(2),-- -, x(N)|0k, My)

- %m 1€x| - 5125 In(27)} )

vyhere 9;; is the maximum likelihood estimatg of O,
C; is the estimated covariance matrix of 6k, and
d) is the dimension of the model’s parameter space.
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If vir, Vii, Var, V2i, **- Vki denote the real and
imaginary components of the eigenvectors, then 0’,1; =
[A1 A2 ... Ae 62 VT, v'{,-(_l) vI VI --~v{i(—l)], where
the vectors v§: 1) are of size p — 1 with elements iden-
tical to the first p — 1 elements of vy;.

Now, if we apply the selection rule (7), we may
experience a scaling problem. Namely, for two sets
of data which are only related by a scaling constant,
the rule may yield two different results. This is
unacceptable, and therefore we modify (7) so that
the rule is based on the predictive densities f(x(L +
1), x(L + 2),---,x(N)|x(1),%(2),- - -, x(L), M), for
k=1,2,--,q, where the data records x(1), x(2), - -+,
x(L) can be considered as training data records. With
the same approximations used for obtaining (7), we can
show that the modified rule becomes

k= argmkin{—ln F(x(1),x(2),- -+, x(N)|8x, Mi)

i f((1), X(2), - x(D)Bx, My) — 2T ZH 6)
2 |G
where 8 and ;. are the maximum likelihood estimates
of the model parameters obtained from all the data and
the first L data records, respectively, and ¢y and Gy
are the estimated covariance matrices of 9, and ék,
respectively.
Now, using the model assumptions, our rule simpli-

fies to

1. . Hf:k-i—l X{V f=k+1 X{l
k= arg min {—ln 20— +1In 20— b
k k
1. 2 1. =

where &z = ;%‘E Zf:k.“_ Al, and &125 = ;%E Ef:k-}-l AL

A critical step of the procedure that implements (8)
is the evaluation of the covariance matrices ¢ and
C:. These matrices can be obtained by a bootstrap
technique, which is described in the next section along
with some other details of the procedure.

4. Implementation by the Bootstrap
Technique

To evaluate (8) for every k, first we find the corre-
lation matrix R according to

R = - 3 "
= ¥ ; x(t)x(t)

1 H
= XX (10)




where X = [x(1)x(2)---x(N)]. Similarly, we obtain
R from the first L data vectors. Next, we determine
the eigenvalues and eigenvectors of R and order them
such that A; > Ay > -+ > 5\,,. From the p — k smallest
eigenvalues, we obtain 6%, and from the so estimated
6% and the eigenvalues, we determine the first term in
(9). We repeat these steps for the matrix R, and find
the second term in (9).

To estimate C; and ék, we use a bootstrap ap-
proach [3]. First we estimate the parameters of the
k-th model for M different sets of bootstrap data X7,
1 =1,2,...,M, where X} is a p x N matrix whose
columns are randomly chosen from the columns of the
actual data matrix X, i.e.,

Xy B (D)7 (2) - - x7(N))

[x(t)x(l2) - - x(Iv)]- (11)

It should be noted that some columns from the original
matrix may appear more than ones in X¥, and some
not at all. From each of the M bootstrap matrices,
we first estimate the model parameters, and then de-
termine the covariance matrix of the parameters. The
same procedure is repeated for the 5(’," data records to
estimate C. Once €y and C;, are found, we compute
the overall criterion of the examined model.

Recall that the k—th model parameters are the
largest k eigenvalues, the associated eigenvectors, and
the noise variance. The eigenvectors have to be treated
carefully for two reasons: the first is that they are
normalized, and the second, that they are not unique.
Since the eigenvectors satisfy

vit

vi=1, I=1,2---k (12)
not all the elements of v; are free parameters. If v; is
of length p, due to (12), the number of free parameters
is 2p — 1. Therefore, in defining 6, we have to exclude
the non-free parameters. In our definition of 8; we
exclude the last component of the imaginary part of
each eigenvector. Therefore, the sizes of the Ci and
Ci matrices are (2pk + 1) x (2pk + 1).

Note also that if v; is the eigenvector corresponding
to the I—th eigenvalue of R, i.e.

Rv; = \ivy

then any vector v;(p) = e/®v; is also a legitimate eigen-
vector of R. Since we use the eigenvectors to compute
the covariance matrix of the model parameters, this
ambiguity is undesirable. So, in our implementation
of the bootstrap algorithm we proceed as follows. If
the maximum likelihood estimate of the I—th eigenvec-
tor obtained form X is #;, and the estimate from the
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bootstrap data X* is ¥}, we rotate the vector v} by an
angle ¢ so that we minimize

d = (%1 — 9V H () — 8997).
The angle ¢ that minimizes d is

_ Im(¥7v})
¢ = arctan Re(\?{’\?f)'
Finally, after the rotation, we have to choose the sign
of &7V} so that the rotated vector points in the same
direction as v;. The same steps are implemented in
evaluating every eigenvector. So is the case in deter-
mining the eigenvectors of Cy.

5. Simulation Results

We have tested the MAP rule in three experiments
and compared it with the AIC and MDL by using com-
puter simulated data. The columns of the matrix A
were given by

a{(¢) = e~ imsin(gn) o—j2msin(¢n) | ., e-—:‘(p—l)wsin(m)]
(13)
where k = 1,2,--.,m, and ¢}, is the direction of arrival
of the k-th signal.
In all the experiments, there were two signals (m =
2) whose amplitudes were given by

sT(t) = [eIm(®) g=ima(®) (14)
where 7; and 7, are independent and uniformly dis-
tributed random variables in the interval (0, 27). The
number of sensors was p = 7, and the maximum pos-
sible rank ¢ = 4. The evaluation of the covariance
matrices was carried out by M = 300 bootstrap data
matrices, and the number of training data records was
L=10. In each experiment there were 100 independent
trials. The used AIC and MDL rules were

-9 ln Hf:k-{-l A{v
F2(p—k)N

+ 2k(2p — k)}
(15)

kAIC = arg n}cin {

and

Moen N k@ -kl N
&2(p—Fk)N 2 '

IEMDL = arg rr}cin {— In
(16)

In the first experiment the signal-to-noise ratio
(SNR), defined by SNR = 10log(1/0?), was equal to
0 dB, and the directions of arrival were ¢; = 20° and
¢2 = 28°. The number of data records was N = 80.

The results are shown in Table 1. Each entry repre-
sents the number of times the MAP, AIC, and MDL




L [k=1]k=2]k=3[Fk=4]
[MaP] 0 [ 9 | 1T [ 0 |
TAG] 0 | % [ 4 [ 1 ]
TMDL] o0 [ 100 ] 0 | 0 ]

Table 1. Performance of the MAP, AIC,
and MDL rules in 100 trials for SNR=0
dB, $,=20°, ¢, = 28°, and N =80. The
correct model is Ma.

B | k= |k=2|k=3|k=4JJ
[MAP[ 2 | 89 | 8 [ 1 |
[ AIC | 13 [ 74 | 12 [ 1 ]
[ MDL | 77 [ 23 | 0 [0 |

Table 2. Performance of the MAP, AIC,
and MDL rules in 100 trials for SNR=-3
dB, ¢,= 20°, ¢ = 28°, and N =50. The
correct model is M.

rules chose the models with ranks k¥ = 1,2,3, and 4,
respectively out of 100 trials. From the results we ob-
serve that all the rules showed excellent performance.

In the second experiment, we decreased the SNR to
- 3 dB and the number of data records to N = 50, but
kept all the remaining parameters identical to those in
experiment 1. The results are shown in Table 2. The
performance of the MDL degraded significantly. The
AIC performed better, and the MAP was the best.

Finally, in the third experiment, we decreased the
separation of directions of arrival by setting 01 = 22°,
and ¢, = 28°, increased the SNR to 0 dB, and kept
the remaining parameters unchanged as in experiment
9. The results are shown in Table 3. Again, the MDL
performed poorly, and the MAP had the best perfor-
mance.

6. Conclusions

A new approach to rank determination of covariance
matrices has been proposed. It is based on the MAP
criterion and implemented by the bootstrap method.
The method in this paper requires assumptions of a
specific structure of the covariance matrix. Current
research is focused on relaxing these assumptions to
make the current procedure applicable in a wider set
of scenarios.

43

I |k=1|k=2|k=3lk=4”
TMAP] 2 | 92 ] 5 | T |
Tac] 7 [ & [ 3 [ 1 |
TMDL] 47 | 58 | 0 [ 0 |

Table 3. Performance of the MAP, AIC,
and MDL rules in 100 trials for SNR=0 dB,
$1= 22°, ¢o=28° and N = 50. The correct
model is Ms.
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On Rate of Convergence of Some Consistent Estimates of the
Number of Signals

K. W. Tam
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Abstract

Using the information theoretic criterion the authors
obtained in [4] three consistent estimates of the num-
ber of signals for an additive model with white noise. In
this paper the rates of convergence for the probabilities
of wrong detections as a function of the sample size are
studied. It is proved that under certain conditions and
Jor a fairly general class of penalty terms, the proba-
bilities of wrong detection are ezponentially decreasing.

1 Introduction

In signal processing, a problem of great interest is
the determination of the number of signals transmitted
in the presence of noise. The received signal vector x(t)
is p x 1 complex vector given by

2(t) = As(t) +n(t)

where A is p x ¢ matrix A = [A(41), A(d2), ..., A(d,)]
and A(¢;) is a p x 1 complex vector which depends on
some unknown ¢; associated with the direction of ar-
rival for the ith signal, s(t) = (s1(t), 52(2), ..., 5,(2)),
si(t) is the ith complex waveform signal, and n(t) is a
pX 1 complex vector associated with the noise. The as-
sumptions made here are (1) ¢ < p; (2) s(¢) is complex
multivariate normal with mean vector 0 and nonsin-
gular covariance matrix ¥; (3) the noise vector n(t) is
complex multivariate normal with mean vector 0 and
covariance matrix O'ZIP, where I, is the p x p identity
matrix, and n(t) is also independent of the signals. The
covariance matrix of the @ (¢) is given by

L = AVA* + 0?1,

where A* denotes the transpose of the complex con-
Jugate ofA. The number of signals transmitted, g, is
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equal to the rank of AWA*. Let A; > Ay > - > Ap be
the eigenvalues of &,
/\12)\22-"2)\q>)\q+1: -':/\p:0’2.-

Let {z(t1),2(t2),...,=(t,)} be a set of observations
and nS = 3" | «(t;)z*(t;). Then E(S) = ¥. Suppose
that §; > 6, > - > 6, are the eigenvalues of S. Let
Hy denote the hypothesis that

Hk: )\12 "ZAk>)\k+1:
My, is the model that Hy, is true. Let
I(k,Cyn) = L(k) + v(k,p)C,,. (1)

Here L(k) is a statistic which will be specified later,
v(k,p) denotes the number of free parameters that has
to be estimated under H; and C,, is some constant
chosen to depend on n. The criterion for determing the
number of signals is to estimate the number of signals
¢ by ¢, which is chosen so that

1(gn, Cp) = min{I(0, Cy), I(1,Cy), - -, I(p — 1,Cy)}.

v(k,p)C, in this case is called the penalty term. The
choice of C,, is crucial and its selection was discussed
in {5]. In general C, is chosen to satisfy the following
conditions:

Yy _ .2
= A, =0

lim -Ci =0
n—oo 1N

nsoo loglogn > @)

and v(k,p) is either £ or £(2p — k +1). Let

Ly(k) = —n{Z log & — (p — k) log(— Z 8)}.
i=k+1 i=k+41
Ay = —{ Z log A: = (p —~ k) log( Z i)}
i=k+1 t=k+1

It can be shown that —L,(k) is the likelihood ratio
test statistic for testing Hj under the assumptions of
normality and independence of observations.




With L(k) = Li(k) in (1) it was proved in [5] that
the estimate of ¢ by § is consistent. Its rate of conver-
gence was shown to be exponential in [1]. The same
result was obtained in [2] where white noise is not as-
sumed. Recently a different formulation of Ly(k) was
provided in [3]. However it is not known if it will give
a consistent estimate of ¢. Based on the result of [3],
the authors proposed several consistent estimates in
[4]. The main purpose of this paper is to investigate
the rate of convergence for three of these consistent es-
timates. It will be proved that for a fairly general class
of C,, functions, the rate is again exponential.

2 Preliminary Lemmas

Lemma 2.1: Suppose that 0 < a < 02/(2p) and
max; j |oij — sij| < a. The followings are true:

L 0< Ly(k) < npPe?/ot, ifk>g

2. Ly(k)+v(k,p)Cn— L1(q) — v(q,p)Cn > n(Ax/2 -
4p?ajo? —p3a?/ot) —v(p - 1,p)Ca, fk<g

Proof:  For the proof, see Theorem 3.1 of [1].
Let £ = {0;;}!;-, and S = {s;;}} ;= The following
result can be found in [:

ma.'xlo'ij—sijl La= IA1_61| < po, i:1;2:"';p
z’]

3)
For £ > 0, define

ac(f) = n(z
k

+(p—k)(n—k)loghesr + Y log(ki—Aj+€)

-+ Z —-—-)+(n—p+1)Zlog/\'

Ai i=k+1

,3=1

i<
k —_ —
+ 3 (p = k) log(R: — Ara1 +£)
i=1
)4
- D log(si—§+8),
i,i=k+1
1 < 7

where \; and '_\k+1 are solutions of

. & X
Y., — 624 S S—
)"7 6'7 n .Z—:x /\j—/\,"l"&
i;:
"'p—k Aj‘Ak+1 ’ ]—1)2:‘ :k
n A]_/\IH-I"{'{
k pr—
3 ; 1 Aidk41
A = 24y ——= 4
t nt i = Ay +£ ®
=X < p& || <n¥logn, 4,5=1,2,....k+1

where 0 < p < 1is a constant, 62 = =L >°F_, ., 6
Lemma 2.2: Thereisa N > 0 such that for all
n > N, the system of equations (4) has at most one
solution.
Proof: Define

k
T z;

I i
gi(x1, 22, ,Tp41) = 6 — — E _
J( y %2, ) +) J n ] xj_zi'l"f

i#)
p—k zTp4

- ,forj=1,2,...,k
n zj—zr41+§ 7

k
1 T;x
~9 Z k41
gk x’w’...’m =0 +__ ——
G 1) n = Ti — Tkt +¢
and G(%) = (91,92, - - -» 9k+1)(£). Then G(¥) = Fif and

only if # is a solution of (4). Let D, = {&: |z; —z;| <
P, |zj] < n?5logn, i,7 =1,2,...,k+1}. Then D,
is convex. It is easy to show that on D,

k41
M=) llve@l
i=1
2/3)og n(n?*%logn + &)
< (p—- D)k +1)%22
<(-Dk+1) n(1 — p)2€2
where ||.|| denotes the Euclidean norm. Suppose that

there exist two distinct fixed points & and ¥ in D,. By
the mean value theorem there is a ZeD, on the line
segment joining & and § such that

(@) = G (D)E - )

Let N be so that for all n > N, M < 1. Then
I|1Z-#]| < M||£-7]| < ||€—¢l|. This is a contradiction
and the uniqueness of solution is proved.

Lemma 2.3: Suppose that pf > X3 — o? and
max; j |oi; — sij| < @0 < min{o?/(2p), (p6 — M1 +
02)/(4p)}. Then there is a N > 0 such that forn > N
the system (4) has a unique solution and

F—§=G() -

16: — Asl

IA

7
1 (5)

IN

62 = Ap4al

where v = p(A1 + 2pao)?/[(1 — p)E]-
Proof: Consider the subset of R’”’
Ey = {lz: — 6] € ap, 1 = 1,2,.. lxk+1—&|
ap and |z; — z;| < p€}. Let N be large enough such
that (p — 1)[/\1 + (P + Dao)?/(N(1 = p)E) < oo I
n > N, then it can showed that
16; — 9; (&) < a0, 1=1,2,...,k
6% — gr41(2)] < a0,
l9: () — g5 (D) < 16: —&; |+010 < A —o?+4pag < pE
1,] = 1 2,...,k+ 1.




Therefore G(£) € Ej. Clearly G(Z) is continous. By
the fixed point theorem the system (4) has a solution

(A1,22,...,Ak41) in E; and it follows that
3 1 p(A1 4 2pag)® .
bi—X| € = i=1,2,0 0k
| <3 (1-p)
o L 1 p(A1 + 2pag)?
162 = Aeqr ()] < _Il(__l__.p;“o).

n  (1-p)

By Lemma 2.2, the solution is unique.

Lemma 2.4: Suppose that pf > A; — ¢? and
max;; |oi; = sij| < o < g < min{o?/(2p), (p€ - A1 +
o?)/(4p)}. There is a N > 0 such that for n > N, we
have

0;

(a) 7= 1+ Ri(5,k), i=1,2,...,k
p Y
B) > 1= (p— KL+ Rab)
izk41 T F+]

(c) log(;\i) = log é; + Rs(i, k),
(d) log(Ak+1) = log(6?) + Ra(k)

(e) log(;\i - /_\j +¢&) = log(é; — 8 + &)+ Rs(i,4,k)
,7=1,2,...0k i<y

(f) log(Ai — Ary1 + &) = log(6; — 62 + &) + Re(i, k)
,7j=1,2,...,k

i=1,2,...,k

where |R;] < n/n(1 < i< 6),7 as in Lemma 2.3 and

(A1 + pao)y v 2r
(02 = (p+1ao)?’ o? — (p+ Do’ (1 - p)¢
Proof: The proof requires simple calculus.

7 = max{

3 Rates of Convergences

Suppose that the assumptions made in Lemma 2.3
are satisfied. Using the expansion of Lemma 2.4, we
may rewrite

14
Aac(€) = Li(k)+n ) _logs; + np+ B(n, k)

=1

The following simple bound for 8(n, k) can be obtained
by the estimates of Lemma 2.4 and (3).

1B(n, k)| < 2p*[n+ |log(A1 + pao)| V |log(o? — pao) |+
[log(A1 — Ap + 2pao + )| V [log((1 — p)¢ ~ 29/N)]

def ~
= A

For the first type of estimates define L(k) in (1) by

L(k) = Aac(f) + Pac (6)
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where poe = 5k(2p — k = 1)logn — 3°7__, . log T(3).
With N given in Lemma 2.3 and n > N, we have
the following theorem.
Theorem 3.1: Assume that pf > A; — 02 and as-
sume also that the following conditions are satisfied:

(a) 0<a<ap<min{o?/(2p), (p€ — 1 +02)/(4D)};
(b) min{v(k + 1,p) — v(k,p))Cpa} > 2np’a®/o* +
P
2 m’?x{Ak} + ; log I'(7);
(c) min{Ac}> dp*a/o"+p°0? /0" +u(p~1,p)Cn/n+
pz_log n/n+2 msx{&k}/n.
Then

P(dn #qlH,) < ZZP(I%' —0ij| > a).

Proof: Suppose that max; ; oi; — sij| < a. By the
assumptions, the results of Lemma 2.3 and 2.4 hold.
By the definition of I(k,C,), we have

1
I(k,Cn) = 1(q,Cn) = 5(k — )[2p — (¢ + k) — 1] logn
[L1(k) + v(k,p)Cp — L1(g) — v(q,p)Cr] + B(n, k)

—B(n,q)+ Y logl(i)— > logT(i).
i=p—g+l1

i=p—k+1

Hence, for k > ¢ it follows from lemma 2.1 and the
assumption (b) that

I(k,Cn) — I(g,Cr) > (v(¢+ 1,p) ~ v(q,p))Cn (7)

p
—2np®a? /ot — kaaX{Ak} - Z log I'(¢) > 0.

i=1

For k < g, it follows from lemma 2.1 and assumption
(c) that

I(k,Cn) — I(q,Cr) > n(Ax — 4p*a/a? — pPa?/o?)
—v(p—1,p))Cr — 2m}?x{5k} —p*logn > 0. (8)

In view of (7) and (8), we have § = ¢q. Therefore,

P(gn # q|Hy) < ZZP(IS«'J' —0ij| > ).

If v(k, p) is a strictly increasing function of & and

Cn

na?

— 00, (9)

a=a(n)]0, %——»0,

then for p£ > A1 — 0% we have the following theorem.




Theorem 3.2: If v(k,p), a(n) and C, satisfy (9),
then the probability of wrong detection using g, satis-
fies the following inequality:

P(dn # qlHg) YD P(lsij — 0ij| > a)
i J

Proof: It is obvious that the assumptions made in
Theorem 3.1 hold. Then the result follows from Theo-
rem 3.1.

For ¢ > 0 the second type of estimates is defined by
letting L(k) in (1) to be

k
Ly(k)=(n—p+1))_logé; + (p — k)(n — k) log(5?)
k = k
+ Y log(8i— 6 +€&)+ D (p—k)log(s — 57 +£)
i"j<=j1 i=1
P P
- Y log6i-+6)= Li(k) +n) _logé;
i3 '=<kj+ 1 i=1
P
+Bn,k)— Y log(6i— & +¢€) (10)
iJ '=<kj+ 1

k
F2+€)+(1-p))> logs
i=1

k
B(n ) = Y_(p - k) log(5 —

P

2

GLiz=k+1
i<

+2 log(6; — & + &) —k(p — k) Iog(&z)

For the third type of estimates, use

I(k,Cp) = La(k) + pac + v(k,p)Cn (11)
with Ly(k) as in (10). Let §, be the estimate obtained
by either the second and third type, then the following
theorem with proof similar to that of Theorem 3.2 is
true.

Theorem 3.3: If v(k,p), a(n) and Cy, satisfy (9),
then the probability of wrong detection using g, satis-
fies the following inequality:

P(gn # qlH) €YD P(lsij — 0ijl 2 @)
i

In the following, §, will denote an estimate given by
any of the three types mentioned.
Theorem 3.4: Suppose that x;,xg,--- are i.i.d. vec-
tors of order p x 1 such that E(x1) =0, E(x;x7) =X
and Elxy |** < oo for some £ > 1. Also let C, in (1) be
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chosen so that Cy, a(n) and v(k,p) satisfy (9). Then
for any s > &, we have

P(gn # 9lH;) = O(n/(na)") + O((na®) ")

as n — 00.
Proof: Indentical to that of Theorem 3.2 [1].
Similarly the following results as in [1] are true:
Covolary 3.1: In Theorem 3.4, if we take a
a(n) | 0 as a slowly varying function and C,, = ne,

then
P(d # 4lH) = O(n'~"(a)™")

as n — 00.

Theorem 3.5: Suppose that x;,xj,--- are ii.d.
with E(x;) = 0, E(x1x}) = £ and E{exp(s|x1|*} < o0
for some k > 0. Then

P4 # alH,) < cexp(~bna?)

as n — oo for some constant b > 0 and ¢ > 0.

Corollary 3.2: If a(n) | 0 is a slowly varying func-
tion, C, = a(n)n and the conditions of Theorem 3.5
are satisfied, for any € > 0

P(§, # q|H,) < cexp(—bn'~¢).
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Abstract

We address the influence of point spectrum on the
large sample statistics of the AR(n) spectral estimator
for fixed n as well as for the case where n approaches
infinity. For fixed n we obtain the distribution of this
estimator. We also obtain approximate expressions for
its mean and variance. These expressions involve the
nth order Capon spectrum. Using recently discovered
convergence properties of this spectrum as n
approaches infinity, we show that these expressions
depend on the ratio of the AR(n) to the nth order
Capon spectrum. This ratio gives insight into the
statistical influence of point spectrum on the AR(n)
spectral estimator, based on the well known difference
in the resolving properties of these two spectra.
Simulations are included to support the theoretical
results. Finally, it is hoped that our attempt to bring
to bear a number of recently published results in this
area will also contribute to a better understanding of
it, and possibly stimulate further investigations.

Introduction

This work addresses the statistics of spectral
estimators associated with a zero mean wide sense
stationary (wss) random process having mixed
spectrum. From the Wold decomposition, any wss
random process, Y, , has a decomposition of the form

(1a)

where X, has an absolutely continuous spectral
density, and where U, is is independent of Y, and is
perfectly predictable given { U; ; s<t }. In this
work we restrict U; to be a harmonic process; that is,

Up= Y Ay sin (wpt+0,) (1b)
k

where the {#,.} are independent, and identically

distributed (iid) uniformly over the interval [ - =,x],

and where {A,,w;} are unknown parameters.

Consequently, Y ; has an autocorrelation of the form

ry(r) = rg(r) + ry(r)
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A2

= r,(r) + zk: —2—k cos(wk'r) (2)
where {r,(7)}®°, is absolutely summable. The
statistics of spectral estimators related to the regular
process, X,, have been studied extemsively over the
years. Only relatively recently, however, have those of
Y, received much attention. There are a number of
reasons for this recent interest. One is no doubt due to
the increasing importance of such processes in the
engineering and physical sciences. An example is the
spectral analysis of signals associated with periodic
systems such as rotating machinery in order to
identify cyclostationary behavior [1]. Complications
introduced by the presence of a harmonic process in
these areas are illustrated in [1]. In fact, given the
adverse influence of such a process on practically all
methodologies related to not only spectral estimation,
but also to system identification and feedback control,
one might wonder why processes such as (1) have
been of such limited interest. At least a partial answer
to this question relates to the mathematical
difficulties imposed by (1b). Afterall, a key
assumption found in all these areas is that the
autocorrelation function decay sufficiently fast;
whereas (2) does not decay at all.

The goal of this paper is to characterize the large
sample statistical properties of a particular class of
spectral density estimators, namely autoregressive
(AR) estimators. We consider both a fixed oxder, n,
model, as well as when n approaches infinity. Much of
this characterization will be obtained by piecing
together recent results of other researchers, and in
particular, those published in statistical journals. A
significant portion will also follow directly from the
convergence results of [2] related to the family of
Capon spectral estimators (see [1] for more recent
related references). Consequently, while we believe
that this work contains valuable original
contributions, it is also our intent to contribute by
combining a collection of recent developments along
these lines into a self-contained work. To begin, we
define the spectral density and power spectrum for the
process (1):




- 00

s & - iwr
Sy(w) = Ery(‘r)e )

- S + o Swrey, B9
Py(w) A lim ~ (2n+ )1 Zn;‘ry(r)e —fwr
A2
= Ko wrwp) - (3b)

We remark in the mixed spectrum setting it follows
from (3) that the spectral density is not well-defined,
in the sense that it becomes unbounded as the number
of available autocorrelation lags approaches infinity.
Moreover, the power spectrum contains mno
information about the spectral density. Hence, it is
natural to expect that the AR(n) spectral estimator
will be poorly behaved near the point spectrum
frequencies, and furthermore, that in the limit (as
n—oo) it will not exist at these frequencies. To arrive
rigorously at these conjectures, consider the AR(n)
prediction model

n
b= —kZ oy = Yi o )
=1

where a 8 [al,..., ai,]t", and define the prediction
error 0° £ E(y;—¥;)°. For clarity of understanding
and notation, we present the minimum variance and
least squares equations.

Minimum Variance Approximation of @ and o*

amy=—-R~ ., ”?nv =ry(0) + atr (5)

where RE fryli—d)=r;_ j}?,j =1

and 12 [Py, (1)y e ry(n)]tr. In the statistical sense
used throug!{mut this paper @y, is not an estimator,
since it is not random. For this reason, Gp, is termed
the minimum variance approximant of a.

Least Squares Estimation of a and 62
(6)

a= —ﬁ—l? H 32=?y(0)+3t?

N-—j

7= (1/N)21: Yi¥t4j - ™

Main Results

We now summarize the key results in this work.
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THEOREM 1. (Li et al [3)) . Let FE&[Fp,mFul’
whose elements are given by (7). Then

N1/

o~

d
F—r) N::oo N(0,Z) .
The elements of T are complex expressions, and so are
omitted here for brevity. This recent (1994) result is
an extension of the 1990 result of [4] for white X, to
the colored case. It leads immediately to our first

result.

THEOREM 9. If for any sufficiently large N we have
R > ¢ > 0 almost surely, then

a ~ .N'(am,,,a;z,,vR'l/N) and
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~ N(O'?nv :ngv(ro - Jgnv)/N) .

The proof of this theorem is similar to that in [5)
(p-352) for the case where U is absent. Our proof uses
similar types of convergence results for random
variables as those used in [5], but combined with a
continuity property of means and variances, along
with Theorem 1 to obtain normality. In [5] normality
was obtained using a martingale difference argument
which does not apply here. This theorem also extends
the result of [6], which is essentially the same as that
of [5], to the mixed spectrum setting.

To continue on to the statistics of the AR(n) spectral
estimator, define z = 2(w) = [e~ meo., l]tr,

-~ - . A
5() = 2°[1 ,8" ] Tand pofe™) 2 2* [Liagny I

Here, * denotes the conjugate transpose. Then

5y =Bl and Sl =2

w) = — an my(w) = : .
| A(e) 12 | Pmul(e) 12

We will also require the Capon nth order spectrum

S cap(w) 8 n/z*R 12 (8)

Our second result is then the following theorem.

THEOREM 3. For large N we have

*(eiw) v N( (eiw) n ”12'nv

p Pmy ) -_———Scap(“") N )
The correlation coefficient, 7, between p(e'”) and g2
is given by

Prmo(€)S my(@)

1/2
"("o'”?nv) oY

v




It follows from theorems 2 and 3 that for large N, the
AR(n) spectral estimator has a distribution which is
the ratio of the normal random variable and a non-
central chi-squared random variable with two degrees
of freedom. Moreover, for large N these random
variables are approximately independent. To gain
further insight into this estimator we use a first order
Taylor expansion to obtain approximate expressions
for its mean and variance. This results in

BS@)] = Smlw) {—d—r} ¢ @9
and 1+N Scap(“’)

5 no2,(r, — o2 w
Var{S(w)] = dnoiny(ro = Omv)Smul ) (9b)

N2Scap(“’)

It must be emphasized that all of the above results
are for a specified model order, n. Explicit dependence
on n of any quantity has been omitted for notational
convenience only. Expressions (9) offer some
interesting insight. In particular, the nth order Capon
spectrum plays a role in both expressions. It is well
known that this spectrum can also be expressed as

Seaplw) = {kﬁjotsﬁ,’f,),(wn “1/a}-1 o

where ngl),(w) is the kth order minimum variance
spectral approximant. Since (10) involves a sort of
averaging of higher resolution AR spectra, it is also
well known that its resolution is notably less than the
AR(n) spectral approximant [7]. Hence, the mean (9a)
is liable to experience significant bias in the region of
strong narrowband spectral components, and in
particular, near point spectrum frequencies. The
variance (9b) will also be influenced in these regions,
possibly in an oscillatory manner, due to the spectral
oscillations in the AR(n) spectrum induced by the
point spectrum [7].

Next, we consider the properties of S(n)(w) as
n+co. From the fact that the AR(n) spectral
approximant converges to Sp(w) at all point of
continuity, it follows that the nth order Capon
spectral approximant also converges to the same.
Thus, at frequencies sufficiently removed from the
point spectrum the above theorem, along with (9) and
(10), give the large n statistical description of the
AR(n) spectral estimator. They also show that the
condition n/N-¥) is sufficient for reasonable behavior
for large order and data lengths. The difficulty in
identifying this large n behavior in the mixed
spectrum setting is greatest near the point spectrum
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frequencies. In fact, it required two theorems in [4] to
rigorously prove that the AR(n) spectral approximant
becomes unbounded at these frequencies as n—oo.
This behavior, however, is a trivial consequence of the
convergence results in [2].

Example. For the process (la) let X; be AR(2) with
a=[1.13 , -0.64]’, and let U, be a single sinusoid
with A =1 and w=n/4. It follows that the AR(2)
myv approximant values are a,,,=[-.94 , .57]" and
c?n,,:l.ﬁl. For N=100 samples per record, theorem 2
yields the predicted approximate distributions

. \orr-941 1 .007 -.004
a~ N(["57]» Loo4 007

Using 1000 simulations of (1a) we obtained estimates

1) ; 5 <~ N(1.61,.034).

1) ; 52 ~ N(1.64,.050).

The approximate normality of 72 and @ are reflected

in Figure 1 and Figure 2, respectively.

~ o st 931 r.007 -.003
@~ XN([_57) L:go3 “007

Histogram of sigmahat*2

140

=

120

|
N
|

r“n'_:ﬂl .l !

01 1.5

Figure 1. Histogram for 2.

The accuracy of the mean approximation (9a) is
shown against the sample mean in Figure 3. A
comparison of (9b) and the sample variance, however,
revealed major difference at all but very high
frequencies far removed from the sinusoid. The sample
variance was two orders of magnitude higher than
(9b) in the region of the tone. At this stage it is not
known whether this difference is due to the sample
size, N, to the Taylor series approximation, or to
some combination of the two.
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Figure 2. Histograms for @;(top) and dy(bottom).

Conclusions

The above results provide a partial description of the
statistical behavior of AR spectral estimators for
random processes having mixed spectrum. The
example illustrated the claims of mv parameter
estimator normality for record sizes as small as
N=100 samples. Furthermore, the approximate
expression for the mean of the AR spectrum compared
well against the sample mean. While not shown here,
investigation of the mnormal distribution claim in
Theorem 3 also proved reasonable for the above
example. But The variance expressions in both (9b)
and in Theorem 3 were nowhere near to the sample
variances at any but the very highest frequencies. A
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further investigation for this and other ARMA types
of noise processes supported the rate dependence of
the variance on N, but actual variances were
dramatically different from predicted ones, except in
the most simple casees where the noise was essentially
white.

,/ *, Sampie Mean
Y

0 : : L h
0 0.5 1 1.5 2 2.5 3
Frequency (radians)

Figure 3. Comparison of (9a) and simulation estimate.
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Abstract

This paper represents a new spectral estimation method
Jor the time series with missed observations. An Auto-
Regressive modeling approach is adopted. The AR param-
eters are estimated by optimizing a weighted mean-square
error criterion. The method can be used in real-time, adap-
tive contexts where the AR parameters are time varying. In
general, both regularly and randomly missed observations
can be handled by this method. The spectral estimates are
compared to those obtained by well known AR parameter es-
timators used in the cases where none of the signal samples
is missed. The performance of the method is illustrated by
some numerical examples.

1. Introduction

In many practical situations, periodically sampled sig-
nals with missed observations may be encountered. This
is caused by a variety of reasons such as accidentally loss
of some portions of data, failure of the measurement equip-
ment, etc. In some applications where data compression is
needed, one may wish to reduce the whole number of data
samples. This may result in a periodically sampled signal
with “missed” observations.

Some important recent works in this field are [11[2][3].
Jones [1] has developed a maximum likelihood algorithm
for ARMA time series with missed observations. He uses
state-space representation and Kalman filtering to compute
the likelihood function of the ARMA parameters and this
function is then maximized using some non linear optimiza-
tion procedure. Rozen and Porat [2] have developed an
algorithm for the problem of spectral estimation through
the ARMA modeling of stationary processes with missing
observations. This algorithm is asymptotically optimal in
the sense of achieving the smallest error-variance when the
number of data approaches infinity. All of the mentioned
methods handle only stationary time series and cannot be

0-8186-7576-4/96 $5.00 © 1996 IEEE
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used in an adaptive context where the AR parameters are
time varying.

In this paper, we present a new method of AR spectral esti-
mation when the data are not consecutive, but some of the
observations are missed. In general, both regularly and ran-
domly missed observations can be handled by this method
[4]. The method is based on non-linear optimization of a
weighted squared error criterion. All the formulae obtained
are recursive, and real-time spectral estimation of non sta-
tionary signals can also be handled [5].

2. Description of the method

The basic idea of this method is very similar to that of
the methods used in adaptive identification contexts (RLS,
LMS, ...). For the convenience and without loss of general-
ity, in what follows, we suppose that the period of sampling
isequal to 1.

We suppose that {y, } is a discrete time zero-mean AR pro-
cess defined as follows :

Yo =0Ty, + v, 6y

where vy, is a zero-mean white process with variance o2,
87 = [61,...,04/] is the vector of the AR parameters and
YL = [Yn—1, ..., Yn_nr] is the vector of the last M signal
samples, M being the order of the AR model. We suppose
that the signal {y, } is subjected to random skipping or dele-
tion of some samples. Let {t1,...,t,} be the set of instants
where the signal samples are not missed. Our aim is to com-
pute the vector 8 that minimizes the following cost function :

1 1< R
Jt, = ;z:wtiet{ = Zwti(yti ~ )’ @)
i=1 t=1

where ¢, is the prediction error at instant ¢; and Je, 1s the
estimate of y;,. In order to compute the value of Ye;» We use
a well known result of the prediction theory that is recalled
below.




The optimal k-step-ahead linear predictor let {yn} be
defined as in (1) and yy,, . . ., Yn—ar be known. The best lin-
ear mean square estimation of Y1k is obtained by the fol-
lowing recursion :

M
Gk = 3 Ointki 3)

i=1

This means that at each instant#;, in order to obtain the value
of g, one has to use the recursion (3) forn = t;_1 and for
k=1,2,...,t; —t;—. In addition, each missed sample y;
where j < t;_1, has to be replaced by its estimated value.
The algorithm can be summarized as below :

1. Computation of g;, at each instant £,, using the opti-
mal linear predictor described above,

2. Non linear optimization of the cost function J; ,,

3. Prediction of missed samples between instants ¢, and
tn4+1 using the last estimated AR parameters.

At step 2, one has to compute the gradient of the cost func-

aJ,.

tion . This is subsequently used in some non linear

optimization procedure to minimize J;,,. Formal descrip-
tion of the algorithm is given in [6]. Details of the gradient
computation can be found in [4][7] and is not given here but
what is important is that the gradient can be updated recur-
sively at each instant t,. In addition, the use of an iterative
optimisation procedure (descent algorithms such as : gradi-
ent or variable-metric methods) together with an exponen-
tial weighting factor such as wy, = X*»~*¢, afford the possi-
bility of operating in non- stationary environments.

3. Some discussions about the cost function

Eq. 3 shows that y;, is a polynomial function of 6 and
hence, J;, is not a quadratic cost function as it may be su-
perficially expected, it is rather a polynomial whose degree
at instant ¢,, depends on the number of missed observations
until ¢,. This may cause the problem of convergence to a
local minimum and not necessarily to the global one. One
solution may be to repeat the algorithm with several initial
values to increase the chance of finding the global minimum.
However, the cost function J; has some interesting proper-
ties, at least in some special cases. For example, the follow-
ing proposition has been proved [4].

Proposition Suppose that {y, } is an arbitrary AR(1) pro-
cess with parameter 0*. Assume that the random pattern of
misses is a Bernoulli-type one in which each measurement
has a fixed probability ¢ = 1 — p of being missed and that
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the misses are independent . If we define the cost function as
below :

Joo = E (wi,6},) = B (we, (9, —8.)%) @)

where §;, is obtained by the method described above and if
we set §ii = y1, then Jy, is a convex polynomial of degree
n — 1 with the minimum at 6 = 6*.

The proposition describes the statistical behavior of
the present method in the case of AR(1) processes. In
several examples tested in the case of AR(2) processes,
only one minimum has been observed for the cost function.
The extension of the proposition to AR(p) processes has not
yet been done. However, the simulations, partly discussed
in the following section, give satisfying results in the cases
where the AR process has a larger order.

4. Simulations

In all the examples, we consider the random Bernoulli
pattern of misses where it is supposed that each sample has
the probability ¢ = 1 — p of being missed and the misses
are independent.

Example 1 In this example we illustrate the performance
of the proposed algoritm in spectral reconstruction. In each
case, and as areference for comparison, the spectral estimate
obtained by a classical AR estimator in the case where none
of the samples is missed, is also given. The approachused in
this case is the forward-backward approach where the sum
of least-squares criterion for a forwad model and the analo-
gous criterion for a time-reversed model is minimised [8].

The first test spectrum is a two peak one. It is supposed
that the two peaks represent the sum of two zero-mean inde-
pendent signals. Each signal is obtained by filtering white
noise by a first order Butterworth filter. The experiment is
repeated 100 times, each time using an independent realisa-
tion of the test signal. The average spectral estimate is ob-
tained by computing the average of the estimates over these
100 independent trials of the experiment. The normalised
frequencies and bandwidths of the peaks are :

f1i=03, Afi=0.005 f,=0.35 Af,=0.005
)
The probability of missing each sample is ¢ = 0.4.

There is approximately 15 dB of difference between the
amplitudes of the sharp peaks. Fig.1 shows plots of the
average estimated spectra for both cases : with and without
missed samples. We note the correct reconstruction of more
informative portions of the spectrum.

The second test spectrum is that of the vowel “i” (in
French!) spoken by a male speaker. The probability of
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Figure 1. Spectral reconstruction. Original
PSD: , estimated PSD: ¢ = 0% : —. —
—q= 40%: ..., (M = 20).
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Figure 2. Spectral reconstruction. Estimated
PSD:¢g=0%:__,¢= 40%: ..., (M = 20).

missing each sample is ¢ = 0.4. The estimated spectra are
shown in Fig.2.

Example 2 In this example the performance of the proposed
algorithm in the non-stationary environments is studied.
In order to test the parameter tracking capacity of the
method, we have considered a sinusoid that is subjected to
an abrupt change in frequency as demonstrated in Fig.3.
The period of sampling is 7' = 1. The AR model order is
M = 2. Fig.4 shows the time-frequency evolution of the
spectral estimates. We note the correct estimation of the
frequencies fi = 0.3 and f; = 0.1. The evolution of the
AR parameters as a function of time is shown in Fig.5. We
note that the choice of a forgetting factor A = 0.99 increases
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Figure 3. The frequency variation of the test
signal in example 2.

g
J

1500

POWER SPECTRAL DENSITY

FREQUENCY

Figure 4. Time-frequency evolution of the
spectral estimate for the test signal in exam-
ple2. A =0.99, ¢ = 40%.

considerably the tracking capacity of the algorithm.

Eample 3 The convergence behavior of the mean
squared prediction error for different values of g is illus-
trated here. The test signal is an AR(2) pocess with the
parameters 87 = [1 — 0.3 0.5]. Fig.6 shows the average
results obtained from 100 independent realisations of the
AR(2) process. It is important to note that the speed of
convergence is the same for different values of q. Clearly,
the residulal error is greater for larger values of ¢. This is
obviously because of the accumulation of the errors due to
missed sample estimations.

From the previous and numerous other examples, the
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Figure 6. Convergence behavior of the mean

squared error. (M = 2),q = 0% : g =

g=40%: .....

following points are noted :

o The performance of the AR estimators in both of the
cases (with and without missed samples) are similar,
particularly in the more informative zones of the spec-
trum.

o In the case where some of the samples are lost, a resid-
ual noise level is observed in the spectral estimates.
This becomes more pronounced as the number of lost
samples increases. The level is situated at —40 dB for
the signals in the example 1. The reason is obviously
the lack of information from the signal.
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e A higher order AR estimator is needed to resolve
neighbouring spectral peaks with the same fidelity as
in single-peak cases. For peaks with greater amplitude
ratios, higher model orders should be used.

o In the case of spectra with larger bandwidths, one must
choose larger model orders in order to have spectral es-
timates with the same fidelity as in the case of sharp
peak spectra. This is because the AR models are less
adapted to these kinds of spectra than those with sharp
peaks.

5. Conclusion

We presented a parametric spectral estimation technique
for signals with incomplete data based on AR modeling.
The method is adaptive and can be applied to non stationary
cases. Both regularly and randomly missed data can be han-
dled. Simulation results show the high performance of this
method even in the cases where a large number of samples
is lost.
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Abstract

An optimum Block Modified Covariance Algorithm
is developed for computing time-varying autoregressive
(AR) parameters. The method presented here differs
from those presented previously [3] in that it uses op-
timally selected time-varying convergence factors such
that the block mean square error is minimized from one
iteration to the next. In particular, the algorithm devel-
oped here, called Block Modified Covariance Algorithm
with individual adaptation of parameters (BMCAI),
uses individual time-varying convergence factors com-
puted using modified covariance matriz approrimations
along with the Gouss-Seidel method. Even though the
BMCALI is gradient based it retains the attractive spec-
tral matching properties of fized-window least squares
modified covariance algorithms while at the same time
providing capabilities for time-varying spectral estima-
tion.

1. Introduction

This paper is concerned with the development of an
efficient algorithm for least-squares forward-backward
prediction (FBP). Unconstrained FBP requires ma-
trix inversion and most of the originally proposed al-
gorithms compute AR parameters based on a fixed-
window approach. Marple developed a fast Cholesky
algorithm (FCA) which requires O(p?) operations and
more recently a fast QR algorithm (FQRA) [1] which
was shown to have improved numerical behavior rela-
tive to the FCA. The fast inversion algorithms [1] are
order recursive and operate on a fixed N-point record,
i.e., they are non-adaptive. A family of fixed-order
sliding-window block gradient algorithms for FBP,
namely the block modified covariance algorithms (BM-
CAs), were proposed recently by Spanias [3]. In par-
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ticular, the BMCA worked reasonably well in a series
of "benchmark” simulations, however its performance
deteriorated considerably in scenario requiring estima-
tion of the spectral content of multiple closely-spaced
sinusoids. This is mainly because the BMCA uses a
single convergence factor (or step size pg) which does
not allow for fast adaptation in cases where the mod-
ified covariance matrix has large eigenvalue disparity.
In this paper, we concentrate on the development of
multiple convergence factors for adapting the AR pa-
rameters. The use of multiple convergence factors in
adaptive FBP was motivated by work done in adaptive
FIR system identification by Mikhael et al [2]. The dif-
ference between the algorithms presented in this paper
and those presented by Mikhael are: a) the algorithms
presented here are intended for modified covariance lin-
ear prediction in which the structure of the equations
to be solved is distinctly different than that encoun-
tered in FIR system identification, b) the algorithms
presented are studied in the context of spectral esti-
mation applications and deal with the idiosyncrasies of
some of complex spectral estimation examples such as
multiple closely spaced sinusoids, and c¢) the proposed
methods go a step beyond Mikhael’s work in the sense
that the computation of the individual pp is done ef-
ficiently using fast and stable Gauss-Seidel numerical
methods tailored specifically to deal with the structure
of the modified covariance equations. The latter is the
most important contribution of the paper in that it
provides opportunities for reducing the complexity of
the algorithms by using approximates of the modified
covariance matrix while maintaining the attractive per-
formance characteristics of least squares MC spectral
estimators.

The rest of the paper is organized as follows. Section
2 presents the BMCA and Section 3 describes an algo-
rithm that uses individual step sizes for adapting the
AR parameters (BMCALI). An efficient Gauss-Seidel it-




erative procedure for computing the optimum conver-
gence factors is also presented in this section. Section
4, presents simulations using the BMCALI and Section
5 gives the conclusions.

2. The Block MC Algorithm

In this section, a general technique for formulating
the BMCALI is presented. We begin by defining the
following parameters: let i be the block index, p the
order of the AR model, N the number of samples for
prediction, 2L the length of the processed block, n the
time index, ax (i) the k-th adjustable parameter in the
i-th block (k = 1,2,3,...,p), z(n) the input signal for
linear prediction (adaptive filter), e(i) the {-th error
signal in the i-th block (¢ = 1,2,...,2L), and S the
number of samples per block shift.

At the i-th iteration, the objective is to minimize
the cost function J(i+1) = }e7,(i+1)ess(i+1) where
the 2L x 1 error vector e (%) is given by

lef(iS +p+1)..e(iS + N)
es(iS+p+1)..es(S+ N)T (1)

en(i) =

and ef(n) and e;(n) are the forward and backward pre-
diction errors

es(n) z(n) — Z ar(i)z(n — k), (2
k=1

4
g(n—p)— Y ax(@)z(n—p+k). (3)

k=1

ep(n) =

Equations (1), (2) and (3) can be written block-wise

as
es(i) = x(i) — X sp(i)a(i) (4)
where the 2L x 1 vector x(3) is given by

z(i) = [zs(@S+p+1)...zf(@S+ N)

2p(iS +1)....z(iS+ N —p)]T  (5)

and the 2L x p matrix X #;(¢) and p x 1 vector a(i) are
defined by

z(iS + p) z(iS+1)
z(iS+p+1) z(iS + 2)
| a@s+nN-1 (iS+N —p)
Xp(i) = Mx(is+2) Z(Zis+p+ﬁ
z(iS + 3) z(iS+p+2)
| 2GS+ N-p+1) .. a(S+N) |
a(”’) = [al (i)>a2(i)7 "'7ap('i)]T' (6)

The BMCA uses the following update formula a(i +
1) = a(i) — uV (), with Vs(8) = — 2 X (D)es (i)
The condition for convergence of the algorithm is 0 <
g < 2L/ Amaz, Where Apqq is the largest eigenvalue of
E(X7,(0)X 1(5))-

3. The BMCAI

In this section, we propose the use of individual con-
vergence factors that are optimally chosen to adapt in-
dividual filter parameters. The step sizes are updated
at each block iteration.

3.1. Problem formulation

‘We now consider the relation
a(i+1) =a(i) — M(i)Vy(7) (7

to update the parameters, where M (i) is a p x p diag-
onal matrix containing the p convergence factors, i.e.,

pa (i)
M(i) = - : (8)

pp(%)

As in all block gradient algorithms, the block gradient
vector V s3(2) is replaced by an estimated block gradi-
ent vector which is given by

S . 1 8J() | .

=——<=-=X .

vfb(z) L aa(l) L fb(l)efb(z) (9)
From (7), (8), (9) one obtains the general form of the
parameter updating formula in matrix vector form as:

a(i+1)=a()+ %M(i)x’fb(i)eﬂ(i). (10)

In the parameter update (10), there are p individual
time-varying convergence factors, u(¢) (k = 1,2, ..., p).
These factors are chosen at each iteration ¢ so as to min-
imize the functional J( + 1). To this end, the forward
and backward errors are expanded using the truncated
Taylor series

er(i+1) = ep(i)+ %—IéTi)Aa(i)
= epn(i) - Xp(i)(ai+1) - a(d)
= enli) ~ X pOMEX T 0enl)
= en(i) = X (i) M(1)q(7) (11)
with g(i) = 1 X7,())es(6) = —Vsu(i). Here the par-
tial derivative aae;—zg) is obtained from (4) and reduces

to —be(i).




The next step is to choose M (z) such that J(i + 1)
is minimized. This is done by setting

%(%)1) =0 (12)
for k= 1,..., p. This leads to the system of equations
T OMORO Gy, 390) = a7 () g Fa) (13)
fork=1,...,p, or
RG&)M(i)a6) = ). (19
Equivalently,
M(i)a() = R™()a(i), (15)

Therefore the updating formula (7) becomes
a(i+1) = a(i) + M(i)q(i) = a(s) + R~} (:)q(). (16)

The last equation is the weight update equation for the
BMCALI with individual adaptation of parameters. Its
main drawback is the requirement of computing the
solution of a system of equations of order p. The asso-
ciated cost can become intolerable especially for high-
order prediction. The following section gives an ap-
proach which can be used to approximate R~ (i)q(s)
in an efficient manner.

3.2. Implementation via a Gauss-Seidel It-
eration

The matrix inversion for computing the vector
R (i)q(4) in (16) can be avoided altogether by solving
the system

R(i)z(2) = q(7) (17)

for z(i) via an iterative method (which only requires
matrix-vector products), then updating

a(i+1) =a(i) + z(i). (18)
More precisely, () is replaced by z(¥)(i) obtained by
applying k iterations

(i) = 2479(6) + Q7(9) (90) - RG)=* )
(19)
starting with a given vector z(®(i). Here Q(i) is a
matrix approximating R(i). Since the system (17) is
symmetric and generally positive definite, for efficiency
we will only consider Gauss-Seidel iterations, i.e.,

Q(i) = D(i) + L(i), (20)
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Algorithm Multiplies Additions
BMCA 4Lp+p 4Lp
BMCAT | p(4N —3p/2+3/2) | p(AN —3p/2 —1/2) + 1

Table 1. Computational Complexity of BMCA
algorithms L = N — p.

where D(i) and L(i) are the diagonal and (strictly)
lower triangular parts of R(Z), respectively. Note that
the matrix R(7) is not always diagonally dominant (at
least for the input data used), which explains why the
Jacobi method (corresponding to Q(i) = D(i)) did
not converge when applied to (17). In our experiments
only 2 or 3 iterations were sufficient to obtain a good
approximation of z(i) when starting with 2(%(;) = 0.
For two iterations, this is equivalent to approximating
z(7) by

2®@@E) = (DG)+ LGE)™.
(a6) - LG)(DG) + L6)a(5)) - (21)

In order to reduce the computational complexity of the
algorithm the sum D(%) + L(z) can be directly updated
without forming R(i + 1), by considering the lower tri-
angular part (including the diagonal) of the recursion

Ri+1)=R@E)+VTIG+1)W(E+1) (22)
ie.,

D(i+1)+LGE+1)=D@E) + LE) +Y(@E+1) (23)

where Y (i + 1) is the lower triangular part of VT (i +
1)W (i +1). Note that with V(i) and W (¢) defined as

P 5

. it . A

YOT| e | = WO )
2L 2L (24)

where x4(7) denotes the f-th row of Xy4(i) (£ =
1,..,2L = 2(N — p)), then Y (i + 1) can be computed
efficiently.

The computational complexity of the BMCALI rela-
tive to that of the BMCA is given in Table 1

4. Simulation Results

The performance of the BMCAI is examined in
terms of its ability to resolve closely-spaced sinusoids




embedded in noise. The PSD obtained using the BM-
CAI compared favorably against that obtained with
the BMCA. In Fig. 1, we show a simulation with 10
closely-spaced spectral peaks of a process given by

z(n) = i A; cos(win) + W(n) (25)
=1

for n = 1,..,32, with A; = 0.1i, w; = 2rU0ELS0E=1)

and Q = 10~* (noise variance). Here f; = 64 is the
sampling frequency (in Hertz) and W(n) a pseudo-
random white-noise sequence. The prediction order
was taken to be equal to 32. The plot in Figure 1
are formed by overlapping the spectra obtained using
the BMCAI with individual adaptation of parameters
based on Gauss-Seidel iterations, for 10 independent
realizations. Each realization is a 100-sample record of
the above input time series. The relative phases change
randomly from realization to realization. Note that
although the sinusoids are very closely spaced in fre-
quency and the available data records are quite short,
the BMCALI tracks accurately the frequencies (Fig. la
and b) without missing any spectral peak. The BMCA
on the other hand (Fig. 1c) fails to resolve one of the
peaks.

5. Conclusions

In this paper, the formulation of a block modified co-
variance algorithm with individual convergence factors
(BMCAI) has been presented. The convergence fac-
tors are optimally selected to minimize the combined
forward-backward squared error in each block. The
BMCAI computes the individual convergence factors
using Gauss Seidel iterations. The BMCALI has been
applied in AR spectral estimation and outperformed
the existing BMCA.
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Figure 1. (a) PSD estimation using the BM-
CAIl based on Gauss-Seidel iterations with 10
realizations of 100-sample records, p=32 and
SNR=42dB, (b) average of the ten simulations
shown in (a), and (c) PSD using the BMCA
with the same record and prediction order but
with a fixed p = 0.001.
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Abstract

Simultaneous registration and tracking has advan-
tages over other track registration techniques because it
s capable of responding to changes in registration er-
rors. The track registration problem is presented for
a network of two geographically distributed radars with
unknown measurement biases that are fized or slowly
varying. The extended Kalman filter that receives un-
registered and cluttered plots from the radars and out-
puts registered tracks, is used to carry out centralized
simultaneous registration and tracking. A multisensor
probablistic data association filter (PDAF) that com-
bines locally gated plots from the radars is developed to
enable the system operate under clutter. The algorithm
satisfies a number of important registration design cri-
teria.

1 Introduction

In multisensor tracking, registration is vital if er-
rors due to site uncertainties, antenna orientation and
improper caliberation of range and time are to be min-
imized. Errors that are fixed but unknown can be han-
dled as part of a multisensor initialization procedure
and a suitable off-line approach is the generalized lin-
ear least-squares estimation (GLSE) technique [1, pp.
1801, [2, pp. 68].

Unfortunately sensor measurement biases can vary
over time due to technical maintenance or the effect of
a changing wind direction on the mechanics of a radar
antenna [3, pp. 38]. This requires on-line estimation
of biases and tracks under clutter using an algorithm
that satisfies some basic registration design criteria [1,
pp. 173].
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In this paper we consider a system of two 2-D
radar detectors A and B located at (71,¢1) and (72, (2)
respectively and responsible for a common cluttered
surveillance region that is being traversed by a single
non-maneuvering target T. We assume that the tar-
get position at time index k with respect to a common
Cartesian coordinate system is (z1(k), z2(k)).

Furthermore each radar measures target position in
polar coordinates with the origin of the measurement
system being located at the radar antenna. We there-
fore assume that the target as reported by sensors A
and B are at T4 (p1(k), 61(k)) and Tp(p2(k), 82(k)) re-
spectively and that these measurements (or plots) in-
clude fixed but unknown biases §p; and 68; and mea-
surement noise v;(k) for ¢ = 1,2. The measurement
equations for the two radars therefore take on the form

[Z:gllg] = hi(z1(k), 22(k)) + [gg:} +u(k) (1)

where v;(k), i = 1,2 are respectively zero-mean, mu-
tually uncorrelated, white Gaussian noise processes of
known covariance R;(k).

With the bias terms unknown it is not possible to
determine the true target position. We must therefore
attempt joint estimation of the target state and biases
using target measurements from the two sensors. To
do this, we append the radar biases to the target state
to obtain the augmented vector

z(k) =[] (k) 8T(R)]" )
where z(k) = [z1(k) 21(k) 22(k) z2(k)]” is the tar-
get state and b(k) = [ép1(k) 661(k) 8pa(k) 665(k)]T
is the bias vector. The resulting process equation there-
fore takes on the form




s+ = [ 9]e+ [Ge®] @

0 I u(k)

where I denotes an identity matrix of dimension 4
and u(k) is a small process noise term. The equa-
tion can be more compactly written as z(k + 1) =
F(k)z(k)+G(k)w(k), where F(k) and G(k) are known,
and w(k) is a zero-mean, white Gaussian noise process
with covariance Q(k). For centralized tracking, the
combined measurement equation takes on the form

p1(k)
0k | _ [ma(e(®)) n(k)
A '[fé(x(k))]*“’ ’]”(’“”[vz(k)] )

which may be rewritten as y(k) h(z(k)) +
v(k) where h(.) is known but in general nonlin-
ear. The measurement noise covariance is R(k) =
block — diag(R1(k), R2(k)). The process and measure-
ment equations in (3) and (4) are in the form required
for approximate conditional mean estimation by (first

order) extended Kalman filtering.

2 Cluttered Environment

We now extend the method to the case of clut-
tered (false) measurements arising from two separate
sensors that are tracking a single target through a
common surveillance region. Denote the set of mea-
surements obtained by sensor i at time k by Yi(k) =
{vi (k), yb(k), ...,yfn;(k)}. In heavily cluttered scenar-
ios, validation gates can be applied to reduce the num-
ber of measurements for processing. The number of
validated measurements per sensor per scan m}'c is a
random variable. In addition to the unknown sensor
biases, there is uncertainty as to which measurement
(if any) in Y;(k) corresponds to the target of interest.

Our approach to the problem is similar to that pre-
sented in [5] where a method was developed for the
fusion of multiple measurements arising from a com-
mon target. The basis of the approach is probablistic
data association (PDA) [4, pp.164]. This is a subop-
timal state estimation scheme which approximates the
Gaussian mixture density of the target state by a single
Gaussian PDF at each processing stage.

The set of mutually exclusive association hypotheses
for the procedure follows:

e Ogo(k) - no measurement in Yy (k) or Yz(k) is a
target measurement;
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o Bio(k) - measurement y} (k) in Yi(k) is a target
measurement, all other measurements in Y; (k) and
Ya(k) are clutter, i = 1,...,mg;

o 6;;(k) - measurement y?(k) in Yz(k) is a target
measurement, all other measurements in Y3 (k) and
Yy(k) are clutter, j = 1,...,m§;

o 6;;(k) - measurement y} (k) in Y1(k) and y}(k) in
Ya(k) are target measurements, all other measure-
ments in Y; (k) and Yo(k) are clutter, i =1, .., mi,
j=1,..,mi

We therefore have a total of mim? + mj + mi +1
possible association hypotheses each of which has an
association probability defined for i = 0,1,...,mj, and
j=0,1,...,m2 by

Bi; (k) = Pr{6;; (k)|Y, Y7} (5)

where Y}* denotes the cumulative data set for sensor i.
The joint registration and tracking process consists
of propagating the approximate conditional mean of
the combined target and sensor bias state &(k—1|k—1)
and its covariance P(k — 1|k — 1) to obtain &(k|k — 1)
and P(k|k — 1) from which
vi(klk—1) =
Si(k)

H;(k)Z(klk - 1)
= H;(k)P(k|k — 1)H;(k)" + R;
where H;(k) is the Jacobian of h(.) evaluated at the
state prediction #(k|k — 1) and S;(k) is the covariance
of the innovation process of sensor ¢ = 1,2. The valida-
tion gate for each sensor is then defined by an ellipsoid
centred on the predicted measurement according to

Gi(k)E {yi(k) e RV : & < w}, (6)
where
& = (g (k) — & (klk — 1))7S7 1 (k) (5} (k) — §* (klk — 1)),
j =1,..,mi, i = 1,2, and N is the dimension of

y: (k). The measurements are assumed Gaussian and so
& ~ x2(N) with N degrees of freedom. The threshold
v; is therefore choosen from a x%(N) probability dis-
tribution according to Pr{f;: < v} > Pgi where Pg;
is sufficiently high. Using the argument in [4, pp.157],
and the condition Z:’;’l‘o Z;"z‘z‘o Bi;(k) = 1, equation (5)
takes on the form

Ceij, fori=1,.,mp, and j =1, .ym2

oy ) Chy, fori=1,.,mi,and j =0
Biik) = § G, fori=0 amndi=1,.ml O
Ca, fori=0,and j=0




where C' is a normalizing constant and
(1 - Pp1Pe1)A:(1 - PDZPGZ)/\z
(2m) ¥ |S1 (k)5
(1- PDIPGI)/\IPD2

a

-5V ()T ST (R)vi(k)

¢j
(2m) % |Sa(k) |3
e; = —oiPD2 TS k()
@mN|S(k)|7

The vector v}(k) is the innovation at sensor 1 based
on measurement i, #?(k) is the innovation at sensor 2

based on measurement j and v;;(k) = [v}(k) 1/2(,6)]
is the mnovatlon from the two sensors for i = 1, ..., m} .
j=1,.,mi Pp; (Pgs;) is the detection (gate) prob-
ability of sensor ¢, A; is the spatial density of clutter
measurements for sensor 7 = 1,2, and the probability
mass function of the number of clutter measurements
is Poisson for each sensor. Having obtained g;; (k), it is
now possible to evaluate the conditional state estimate
and error covariance.

2.1 Conditional Mean and Error Covariance

The state update equation of the PDAF therefore
takes on the form #(klk) = Z(klk — 1) + W(k)v(k)
where W (k) is the filter gain and u(k) is the combined

innovation given by v(k) = :';’1‘0 ;=0 Bij (k)vij (k) or
5 v (6) [Bio (k) + 7 B ()
SR, V() Ao (k) + 7% s ()

The error covariance associated with the updated
state estimate has the form

vik) =

+  aa(k)Pa(k|k) 4+ c12(k) Pr2(k]k) + P(k)
Pi(klk) = P(klk - 1) - Wi(k)S; (k)W (),
Puo(klt) = P(klk— 1)~ W(K)S(k)WT (k)
where W (k) = [Wy(k) W,(k)] and W;(k) is the gain

corresponding to measurements from sensor i = 1,2.
With probability Goo(k), none of the measurements is
correct and so the covariance P(k|k — 1) indicating no
update, appears with this weighting. Similarly, with
probability a;(k) = Sk
is available only to sensor 1 and so the updated covari-
ance Py(klk) has this weighting Furthermore, with

probability as(k) = Z 1 Boj(k) target measurement
is available only to sensor 2 and so the updated co-
variance Pp(k|k) has this weighting. Lastly with prob-
ability aj2(k) = (1 — Boo(k) — a1(k) — aa(k)) target

Bio(k), target measurement
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measurement is available to both sensor 1 and 2 and
so the updated covariance Po(k|k) appears with this
weighting. The last term P is positive semidefinite [4,
pp. 324], and represents the effect of the measurement
origin uncertainty since we do not know which of the
mimi+mi +m? validated combinations actually rep-
resents the target measurement combination. The fac-
tors B;;(k) and P(k) are measurement dependent and
so P(k|k) is a stochastic Riccati equation.

3 Numerical Results and Conclusions

Figure 1 shows a network of radars A and B each
with fixed but unknown range and azimuth biases. For
a target originating from location (250, 95), two dis-
tinct plots each displaced from the true trajectory are
obtained. Tracking was done under Gaussian measure-
ment noise and a clutter density that generates between
0 and 6 validated clutter samples per sensor during
each stage. Figure 2 shows the composition of vali-
dated measurements. Figures 3 and 4 show bias esti-
mates and their variances.

The registration and tracking algorithm is robust
under clutter condition once track initiation has been
properly done. It can track fixed or slowly varying
registration errors under clutter conditions and is based
on a sound mathematical foundation. Furthermore,
it provides quality estimates for the solution set and
can be adapted to cater for a wide range of system
configurations.
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Abstract

An approach to array processing (i.e., direction-
finding, signal separation and reconstruction, and cali-
bration) based on the Analytical Constant Modulus Al-
gorithm s considered. The main advantage of this
approach is that the multidimensional search associ-
ated with Mazimum Likelihood based estimators or the
single dimensional search associated with MUSIC type
methods are eliminated.

The sensor array elements are assumed to have the
same, up to a multiplicative constant, angle dependent,
unknown gain pattern. We show that under this as-
sumption it is possible to estimate the array response
matriz and then use the result for direction finding, if
the nominal array manifold is known, at least approz-
wmately. It is also possible to use the estimated array
response maitriz in order to separate and reconstruct
the signals, or calibrate the array shape or response.

1 Introduction

In recent years many approaches to direction finding
were proposed. All of these approaches are associated
with some form of search. Maximum Likelihood based
techniques like the EM algorithm (1], IQML [2], APM
[3], MODE [4] and others, require multidimensional
search in the parameter space. The main difficulty in
using these approaches is that the algorithms tend to
converge to a local stationary point and convergence
to the global maximum (or minimum) is not guaran-
teed. Even MUSIC [5] type algorithms require a one-
dimensional search which is indeed free from conver-
gence problems but is associated with a lengthy search
procedure (the search must be performed on a fine
grid in order to avoid missing the narrow peaks of the
MUSIC spectrum). Search-free techniques like Root-
MUSIC and ESPRIT [9] require special array configu-
rations that limit their applicability.

We consider an approach to steering vector estima-
tion that does not rely on a search procedure. The
steering vectors of the array are estimated via a short
non-iterative algorithm. The estimates are close to the
true steering vectors, if enough data samples are col-
lected. If desired, the estimates can be further im-
proved using a few iterations that are guaranteed to
converge. These estimates of the steering vectors can
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be used for direction finding, signal separation and re-
construction, or array shape/phase calibration. The
fact that the algorithm is essentially search free is its
most appealing feature.

The method is based on a version of the Analytical
Constant Modulus Algorithm that was recently pro-
posed by van der Veen and Paulraj [6] for estimating
constant modulus signals. However, the new approach
is not limited to constant modulus signals or any other
specific signals.

2 Problem Formulation
We begin by describing the data model for the ob-
servation of narrowband signals by an array of sensors.
We consider an M-element array of sensors and N
narrowband signal sources, and define the M x 1 vector
a,, to be the complex array response for the nth source.
The outputs of the M array elements at the k—th
sample are arranged in an M X 1 vector,
x(k) = As(k) +u(k)

k=1,2---N,; (1)

where u(k) is the noise vector, s(k) is the signal vector,

and
(2)

Assuming that the signal vectors s(k) and the noise
vectors u(k) are realizations of stationary, zero mean
random processes, and there is no correlation between
the noise and the signals, the data covariance matrix

R 2 E{x(k)x#(k)} = AR,A® 49T (3)

where R, is the signal covariance matrix (a non-
singular matrix) and 71X is the noise covariance matrix.

Given N, snapshots, the sample covariance is given
by

A
A= [alyaZa"')aN]

N
X 1 s H
R= 'J—V-: kézl x(/c)x (k) (4)
We assume that the sensors have identical gain pat-

tern, up to a multiplicative scalar factor. We therefore
use the following model for A.

[A]m,n = 9m ejd’m’"

(5)

The scalar g,, is the multiplicative factor of the mth
sensor gain pattern, and the constants ¢, , are the




unknown sensor phase responses. We are interested
in estimating the steering vector matrix, A. As a by
product, we also estimate the noise variance, 1. Note
that the observations, namely x(k), do not change if
A is right multiplied by a diagonal matrix while s(k)
is left multiplied by the inverse of the same diagonal
matrix. This means that the steering vectors and the
signals can be observed (and estimated) only up to a
multiplicative complex scalar. We therefore assume,
without loss of generality, that the first element of each
steering vector 1s one.

Note that if the signals are uncorrelated then R is
diagonal. In this case the scalars g, can be estimated
by observing that the elements on the diagonal of the
data covariance are given by

N
Rm,m = grzn Z[Rs]n,n +7 (6)
n=1

Under the assumption that g1 =1 we get

N
E[Rs]n,n ~Rp;— 7 (7)
n=1
and
~ Rm m = ﬁ
Y (8)
" Rii—1
where ~ indicates estimated values.

This estimation procedure for g,,, does not hold in
the general case of correlated signals. We therefore re-
sort to the assumption that g, is given. This assump-
tion is not restrictive in most direction finding appli-
cations. However, it might be somewhat restrictive in
the signal estimation problem for which the sensor re-
sponse is not of prime concern.

3 Steering Vector Estimation
The eigenvalue decomposition of the data covariance
is given by

R=ARAY 4+ I =UA,U? 49U, U (9)
where A, = diag{);,---, An} is a diagonal matrix con-
taining the N biggest eigenvalues in decreasing order,
and the associated eigenvectors are the columns of the
matrix U,;. The columns of U, are the remaining
M — N eigenvectors, associated with Axt1 = -
Am = 7. Subtracting 71 from the above equation we
get

AR AP =U,T, UY
where T, = diag{A\; — n,---,An —n}. Hence,

(10)

A=UW (11)
where W is a weighting matrix.

Based on an estimate of U, we are interested in
estimating the matrix A, under the constraint that the

modulus of each column is given by [1, 92 - - -gu]T. This
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raises the question of how many vectors of this form are
contained in the subspace spanned by the columns of
A? We show in [8] that in some cases there are more
than N such vectors in the range of A, and therefore the
solution of (11) is not unique. However, in most cases,
there are exactly N vectors with the given modulus in
the column space of A. The later is assumed in sequel.

The eigen decomposition of R provides the estimate,
U,, of U,. Equation (11) indicates that minimizing the
distance between its left hand side and the estimate
of its right hand side corresponds to estimates of the
steering vectors.

In order to find W we follow the steps of [6]. Any
column vector, w, in W must satisfy the equations,

H

w H

where @ is the mth row vector of U,. These equations

can be written in a different form as,

Pwow"')=g (13)

where the mth row of P is given by vecT{i1,, i} and

~ A
g%, aul” (14)
Define the Householder matrix

a aq”
Sr-o——,
qTq

A . ~
q=g+|lgller  (15)

Q

where e; is a vector of zeros except for the first element
which is one. By left multiplying (13) by Q we get

QP(w @ ") = —|[g]lex (16)

Define the SM —1) x N? matrix P to be QP, with the
first row deleted, so we get

Pw@w*)=0 (17)

This equation indicates that w @w* belongs to the null

space of P. Note that

rank{P} < min{M —1,N*} <M -1 (18)

Substituting in

dim{null{P}} = N? — rank{P} (19)

We get,

dim{null{P}} > N? — (M - 1) (20)
In order that the null space null{f’} will span the
space of all the N vectors w ® w* we must have

dim{null{f’}} = N. Hence, we get the condition

N>N?—-M+1 (21)

or

M>N?-N+1 (22)




If the condition (22) is met, then the solutions to (17)

span the null space of P. Assume now that the null{P}
is spanned by the vectors y;,---,yn. Each of these
vectors can be obtained by a linear combination of the
solutions of (17). Hence,

N

Yn = Zajn(wj ® W;) y
j=1

n=1,... (23)

N

where o;,, are complex scalar coefficients. Performing
the inverse vec operation on (23) we get

N
vec Yy, )} = Zajn(w;wf) =W*'A, WT (24)

ji=1

Hence, to obtain W we have to simultaneously diag-
onalize the matrices vec™{y,}, n=1,2,---,N. An
algorithms for performing this task can be found in [7].
Our approach is to simultaneously diagonalize only two
matrices. This can be done by solving a generalized
eigenvalue problem. Therefore we define,

NI
Y12 Y vec Uy} = WA, WT (25)
n=1
and
N -~
Y22 Y vee Yya} = WAWT  (26)
n=N'41

where N is the integer part of N/2. The eigen vectors,
v; that satisfy
YIV]' = Yngﬂj (27)
can be arranged in a matrix whose inverse is W7,
In order to obtain the final estimate of A we mini-
mize the cost function
A A A
f(Us,A) = |lU,W - A2, (28)
This can be done in two steps that can be repeated
several times. Convergence is guaranteed since the cost
function value decrease (or stay the same) in each step.

1) In this step we use the last estimate of W and
find A. Since the modulus of the elements of A
are known we only have to find the phases of A
which minimize the cost function. Obviously, the
minimizing phase estimates are given by

phase{A;;} = phase{[fl,W],-j} (29)

2) In this step we use the last estimate of A to esti-
mate W. The W that minimizes the cost function

is given by X
W =UHA (30)

Usually, between 3 to 10 iterations are needed.

68

4 Application to Direction Finding
Once the steering vector phases have been esti-
mated, the signal directions of arrival (DOAs) can be
easily extracted. If the array response is close to the
free space model of propagation, then the phase of the
mth element of the nth steering vector is given by

¢m,n

27(dg,m sin 8, cos ¥y, + dy m sin b, sin v,
+d, , cosb,) (31)

where dg,m, dy m, d;m are the Cartesian coordinates
(in wavelength units) of the mth sensor, while 6, and
¥n are the elevation angle (with respect to the z axis)
and the azimuth (with respect to the z axis), respec-
tively, of the nth source. Note that ¢, , is known only
modulo 27. Hence, phase unwrapping must be used
before applying the following method.

efine
dz,l dy,l dz,l
~ A dz,z dy,2 z,2
H=2rn . (32)
dem dym dm
#,, = [sinf, cos ¥, sinb, sin ¢, cosf,]” (33)
bn = [D1,n) b2n - bma]T (34)
which yield the following matrix equation
Hp, = ¢, (35)
Hence we have _
p,=Hig, (36)

where HT is the left inverse of H. The estimates of
O, ¢¥n follow immediately.

If the array response is given by a calibration table
rather than an analytic expression then the DOA is
estimated by finding the calibration table entries that
are close in some sense to the estimated steering vector.
Interpolation is usually required to improve the system
accuracy.

5 Numerical Examples

Consider a linear array of 3 sensors with element
spacing of half a wavelength. The sensor gains are
chosen arbitrarily to be 1.0, 1.02, 1.34. The array
intercepts two equal power uncorrelated signals with
Signal to Noise Ratio of 10dB. The direction of ar-
rival (DOA) of one signal is 0° relative to broadside
while the DOA of the other signal varies from 5° to
30°. The algorithm is applied to simulated data matrix
with 500 snapshots. Figure 1 shows the experimental
standard deviation, o, and experimental bias, *, of the
steering vector phases, vs. the DOA separation. Each
circle/asterisk is based on 200 experiments. The solid
lines represents the Cramer-Rao bound which coincides
with the theoretical performance analysis, in this case.
It is apparent that the bias is negligible and the stan-
dard deviation agrees with the theoretical performance
analysis and the bound.




Next, consider a linear array of 6 sensors with ele-
ment spacing of half a wavelength. The sensor gains are
chosen to be 1.0, 1.01, 1.35, 1.47, 1.12, 1.09. The ar-
ray intercepts two correlated equal power signals with
Signal to Noise Ratio of 10dB. The magnitude of the
correlation coefficient is 0.95 and its phase varies from
0° to 180°. The direction of arrival (DOA) of one sig-
nal is 0° relative to broadside while the DOA of the
other signal is 10°. The algorithm is applied to simu-
lated data matrix with 500 snapshots. Figure 2 shows
the experimental standard deviation, and experimental
bias, of the steering vector phases vs. the correlation
coefficient phase. Each circle/asterisk is based on 200
experiments. The solid line represents the theoretical
performance analysis, and the dashed line represents
the Cramer-Rao bound. We note that the experiments
verify the theoretical performance analysis and that the
bias is negligible. Observe that due to the correlation
between the signals the statistical efficiency is lost.

6 Conclusions

We examined a new approach to direction-finding
and signal estimation based on steering vector estima-
tion. We showed that it is possible to estimate the
array response matrix and then use the result for Direc-
tion Finding, if the nominal array manifold is known,
at least approximately. It is also possible to use the ar-
ray response matrix estimate in order to separate and
reconstruct the signals or calibrate the array. The main
advantage of the method is that the multidimensional
search associated with Maximum Likelihood based esti-
mators or the single dimensional search associated with
MUSIC type methods is eliminated. The method can
be applied in the presence of specular multipath (us-
ing spatial smoothing) but it is not suitable for signal
separation in the presence of diffuse multipath.
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ABSTRACT

We introduce a new joint spatial- and doppler-frequency
high-resolution estimation technique based on the fractional
lower-order statistics of the measurements of a radar array.
We define the covariation matrix of the space-time radar
observation vector process and employ subspace-based es-
timation techniques to the sample covariation matrix re-
sulting in improved target angle and Doppler estimates in
the presence of impulsive interference. We name the intro-
duced technique “2-D Robust Covariation-Based MUSIC”
or “2-D ROC-MUSIC”. We show that 2-D ROC-MUSIC
provides better angle/Doppler estimates than 2-D MUSIC
in a wide range of impulsive interference environments and
for very low signal-to-noise ratios.

1. INTRODUCTION

Most of the theoretical work in detection and estimation
for radar applications has focused on the case where clutter
is assumed to follow the Gaussian model. The Gaussian
assumption is frequently motivated by the physics of the
problem and it often leads to mathematically tractable solu-
tions. However, in many practical instances, experimental
results have been reported where clutter returns are im-
pulsive in nature and cannot be appropriately modeled by
means of the Gaussian distribution [1]. A number of distri-
butions, based on empirical as well as theoretical grounds,
have been proposed for the modeling of non-Gaussian clut-
ter and interference environments [2, 3].

Recently, a statistical model for impulsive clutter has
been proposed, which is based on the theory of symmetric
alpha-stable (SaS) random processes [4]. The model is of a
statistical-physical nature and has been shown to arise un-
der very general assumptions and to describe a broad class
of impulsive interference. In particular, it has been shown
in [4] that the first order distribution of the amplitude of
the radar return follows a SaS law, while the first-order
Joint distribution of the quadrature components of the en-
velope of the radar return follows an isotropic stable law. In

The work in this paper was supported by Rome Laboratory
under Contract F30602-95-1-0001.
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addition, the theory of multivariate sub- Gaussian random
processes provides an elegant and mathematically tractable
framework for the solution of the detection and parameter
estimation problems in the presence of impulsive correlated
radar clutter.

As mentioned in [5], much of the work reported for radar
systems has concentrated on target detection in Gaussian
or Non-Gaussian backgrounds [6, 7, 8, 9]. In this paper,
we are addressing the parameter estimation problem with
a space-time adaptive processing (STAP) radar operating
in impulsive clutter and interference environments. We
present a new subspace-based method for joint spatial- and
doppler-frequency high-resolution estimation in the pres-
ence of impulsive noise which can be modeled as a complex
symmetric alpha-stable (Sa.S) process. In Section 2, we
present some necessary preliminaries on a-stable processes.
In Section 3, we formulate the STAP problem for airborne
radar. In Section 4, we define the covariation matrix of
the space-time radar sensor output snapshot and we show
that eigendecomposition-based methods, such as the MU-
SIC algorithm, can be applied to the sample covariation
matrix to extract the angle/Doppler information from the
measurements. Finally, in Section 5, the improved perfor-
mance of the proposed source localization method in the
presence of a wide range of impulsive noise environments is
demonstrated via Monte Carlo experiments.

2. MATHEMATICAL PRELIMINARIES

In this section, we introduce the statistical model that will
be used to describe the additive noise. The model is based
on the class of isotropic SaS distributions, and is well-
suited for describing impulsive noise processes [4].

Stable processes satisfy the stability property which
states that linear combinations of jointly stable variables
are indeed stable. They arise as limiting processes of sums
of independent, identically-distributed random variables via
the generalized central limit theorem. They are described
by their characteristic exponent a, taking values 0 < o < 2.
Gaussian processes are stable processes with o = 2. Stable
distributions have heavier tails than the normal distribu-
tion, possess finite pth order moments only for p < «, and




are appropriate for modeling noise with outliers.

A complex random variable (r.v.) X = Xi + 3X» is
isotropic SaS if X; and X are jointly SoS and have a
symmetric distribution. The characteristic function of X is
given by

¢(w) = E{exp(BRwX "))} = exp(—7|w|”), (1)

where w = w1 + gwa2. The characteristic exponent a is re-
stricted to the values 0 < a < 2 and it determines the
shape of the distribution. The smaller the characteristic
exponent «, the heavier the tails of the density. The dis-
persion v (v > 0) plays a role analogous to the role that
the variance plays for second-order processes. Namely, it
determines the spread of the probability density function
around the origin.

Several complex r.v.’s are jointly SaS if their real and
imaginary parts are jointly Sa.S. When X and Y are jointly
SaS with 1 < a < 2, the covariationof X and Y is defined
by

E{Xy<r 1>}

X, Y]a = —5>—7r, 1<p<a, 2
where vy = [Y, Y]a is the dispersion of the r.v. Y, and we
use throughout the convention Y <P> = |Y[P7'Y*". Also,
the covariation coefficient of X and Y is defined by

[X,Y]a
A = , 3
ny [Y, Y]a ( )
and by using (2), it can be expressed as
E{XYy<r1>}
AX,Y = — oo fort <p<a. 4
*¥ = T E(v) @

The covariation of complex jointly SaS r.v.’s is not gener-
ally symmetric and has the following properties:

P1 If X;, X2 and Y are jointly SaS, then for any complex
constants a and b,

[aX1 +bX2,Y]a = a[X1, Y]a +b[X2, Y]a;

P2 If Y; and Y, are independent and X;, X2 and Y are
jointly SaS, then for any complex constants a, b and
C)

[aX1,bY1 4 cYala =
ab<°_1>[X1v Yila + ac<°_1>[X1, Y2la;

P3 If X and Y are independent SaS, then [X,Y]a = 0.

3. STAP PROBLEM FORMULATION

Space-time adaptive processing (STAP) refers to multidi-
mensional adaptive algorithms that simultaneously combine
the signals from the elements of an array antenna and the
multiple pulses of a coherent radar waveform, to suppress
interference and provide target detection [10, 5, 11].
Consider a uniformly spaced linear array radar antenna
consisting of N elements, which transmits a coherent burst
of M pulses at a constant pulse repetition frequency (PRF)
f and over a certain range of directions of interest. The
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array receives signals generated by ¢ narrow-band mov-
ing targets which are located at azimuth angles {6x; k =

1,...,q} and have relative velocities with respect to the
radar {vx; k = 1,...,q} corresponding to Doppler frequen-
cies {fx; k =1,...,q}. Since the signals are narrow-band,

the propagation delay across the array is much smaller than
the reciprocal of the signal bandwidth, and it follows that,
by using a complex envelop representation, the array output
can be expressed as [10]:

x(t) = V(©,w)s(t) + n(¢), ()

where

o x(t) = [z1(t), ... ,xMN(t)]T is the array output vec-
tor (N: number of array elements, M: number of
pulses, ¢ may refer to the number of the coherent pro-
cessing intervals (CP1’s) available at the receiver);

o s(t) = [51(t),...,8¢(t)]T is the signal vector emitted
by the sources as received at the reference sensor 1of
the array;

o V(0,w) = [v(¥91,®1),...,V(Jq, @g)] is the space-
time steering matriz (wx = 7~ );

e Space-Time steering vector: v(9k, @) = b(w:) ®

a(dx);
— a(0x) = [1,672"’9",...,e’(N_lﬂ’"’k]T is the spa-
tial steering vector (Jx = ;‘40— cos(0x));
— b(wx) =[1,e%"%, ..., ! M=127wx 1T is the tem-

poral steering vector.

o n(t) =[ni(t),.. Snmn ()T

Assuming the availability of P coherent processing in-

is the noise vector.

tervals (CPI’s) t1,...,tp, the data can be expressed as
X =V(0,w)S + N, (6)
where X and N are the M N x P matrices
X = [x(t),...,x(tr)], (7
N = [n(t1),...,n(tp)], 8
and S is the ¢ X P matrix
S =[s(t1),--.,s(tp)]. 9)

Our objective is to jointly estimate the directions-of-arrival
{6x; k = 1,...,q} and the Doppler frequencies {fx; k =
1,...,q} of the source targets.

4. THE ARRAY COVARIATION MATRIX

We will assume that the g signal waveforms are non-coherent,
statistically independent, complex isotropic SaS(l<a<
2) random processes with zero location parameter and co-
variation matrix I's = diag(Vs,,.--17s,). Also, the noise
vector n(t) is a complex isotropic Sa.S random process with
the same characteristic exponent « as the signals. The noise
is assumed to be independent of the signals with covariation
matrix Ty = vl




Now, we define the covariation matriz, T'x, of the obser-
vation vector process x(t) as the matrix whose elements are
the covariations [2i(t), z;(t)]o of the components of x(t).
By using properties P1-P3, we obtain the following expres-
sion for the covariation of the sensor measurements:

q

[t} 25 (8] = ) w0, @) > (9%, wr)ve, +
k=1
Twéi; t4j=1,...,MN. (10)

In matrix form, (10) gives the following expression for the
covariation matrix of the observation vector:

Tx = [x(t), x(t)]a = V(0,®)TsV<*"1>(0, @) + a1,
(11)
where the (3, j)th element of matrix V<*"1>(@, ) results
from the (7, {)th element of V(©, ) according to the oper-

ation
V@), = VE,@)iE™  (12)

Clearly, when o = 2, i.e., for Gaussian distributed signals
and noise, the expression for the covariation matrix is iden-
tical to the well-known expression for the covariance matrix:

Rx = V(0,m) TV (0, w) + ¢°I, (13)
where 3 is the signal covariance matrix.

When the amplitude response of the sensors equals unity,
it follows that

[V<et>(0,w)); = [V©, )}, (14)
and thus the covariation matrix can be written as
I'x = V(0,w)['sVH(0,w) + 1.1 (15)

Observing (15), we conclude that standard subspace
techniques can be applied to the covariation or the covaria-
tion coeflicient matrices of the observation vector to extract
the angle/Doppler information. In practice, we have to es-
timate the covariation matrix from a finite number of array
sensor measurements. A proposed estimator for the co-
variation coefficient Az;(t),2;(¢) is called the fractional lower
order (FLOM) estimator and is given by [12, 13]

D T s
zi(t),z5(t) = Z:;l |z; ()|

for some 0 < p < a/2. We will refer to the new algorithm
resulting from the eigendecomposition of the array covari-
ation coefficient matrix as the 2-D Robust Covariation-
Based MUSIC or 2-D ROC-MUSIC.

(16)

5. EXPERIMENTAL RESULTS

In this section, we show results on the resolution capabil-
ity and estimation accuracy of the 2-D ROC-MUSIC and
2-D MUSIC methods. The array is linear with five sensors
spaced a half-wavelength apart (N = 5). The number of
transmitted pulses is M = 10. Three moving targets im-
pinge on the array from directions @ = [—20°, —40°,40°]
and they have Doppler values D = [—0.3,~0.2,0.3]). The
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Figure 1: 2-D MUSIC and 2-D ROC-MUSIC angle-Doppler
spectra (N = 5, M = 10, ® = [-20°,—-40°,40°] D =
[-0.3,—0.2,0.3]). Additive stable noise (& = 1.5, yn = 4).

number of snapshots available to the algorithms is P =
1000. The noise follows the bivariate isotropic stable distri-
bution with & = 1.5.

Since the alpha-stable family for o < 2 determines pro-
cesses with infinite variance, we define an alternative signal-
to-noise ratio. Namely, we define the Generalized SNR
(GSNR) to be the ratio of the signal power over the noise
dispersion vy,:

M
GSNR = 1010g(7n1M 3 Is®)P)- (17)
t=1

The GSNR is 22.3 dB (v» = 1). The characteristic. expo-
nent o of the additive noise is unknown to the ROC-MUSIC
algorithm. The parameter p in the estimation of the covari-
ation matrix (cf. (16)): was set equal to p = 0.8. Clearly,
MUSIC can be thought as a special case of ROC-MUSIC
with p = 2.

In Figure 1, isosurfaces of space-time spectral estimates
are shown for the 2-D ROC-MUSIC and the 2-D MUSIC al-
gorithms. We can see that the 2-D MUSIC method exhibits
poor resolution performance and it does not resolve the two
closely-spaced moving targets. On the other hand, the 2-D




(a)

PROBABILITY OF RESOLUTION
o
o

o :MUSIC

*: ROC-MUSIC
. \ . . \ .
2 4 5 6 7 8 9 10
ANGULAR SEPARATION {DEG]
(b)
10° :
10°}
=
o
@
@
w
w
Z 10’
=2
4
0
4
w
=
10°F
o :MUSIC
*: ROC-MUSIC
10"
2 3 9 10

5 6 7
ANGULAR SEPARATION [DEG]

Figure 2: Probability of resolution (a) and mean square
error (b) as functions of the source angular separation, a =
1.5.

ROC-MUSIC method exhibits high-resolution capabilities
for non-Gaussian additive noise environments.

Figure 2 illustrates the variation of the algorithmic per-
formance with respect to the spatial angle separation of the
two closely spaced incoming targets for GSNR= 22.3 dB,
{a = 1.5). As expected, the resolution capability of both al-
gorithms improves with increased angle separation between
the two sources. But for a given probability of resolution,
the 2-D ROC-MUSIC algorithm requires a lower angle sep-
aration threshold than the 2-D MUSIC algorithm.

6. CONCLUSIONS

We considered the problem of target angle and Doppler
estimation with an airborne radar employing space-time
adaptive processing. We introduced a new joint spatial-
and doppler-frequency high-resolution estimation technique
based on the fractional lower-order statistics of the mea-
surements of a radar array. We showed that the proposed
2-D ROC-MUSIC algorithm provides better angle/Doppler
estimates than the 2-D MUSIC method, and it can result
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to improved STAP radar systems operating in impulsive
interference environments.
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Abstract

Antenna array pattern synthesis deals with choosing the
complex weights of an antenna array in order to satisfy a set
of specifications or to say if such a set is feasible. It appears
that these problems can often be expressed as convex op-
timization problems which can be solved numerically with
algorithms such as interior point methods. Two examples
are given dealing with constrained adaptive array proces-
sing and robustness issues.

1 Introduction

It is well known that the antenna pattern of a linear array
in direction § is given by the amplitude of

N
G(6) = Zw,-ejoﬂx"c‘”o , ¢))
i=I

where the complex weights w; are the parameters. The
position of the elements are given by z; whereas X is the
wavelength. The pattern is easily generalized to any array
geometry with two angular variables (azimuth and eleva-
tion).

What may be not as well known is that the array pattern
is a convex function of the real and imaginary parts of the
weights. This important property makes possible the solu-
tion of many antenna array synthesis problems using convex
optimization and more particularly recently developed algo-
rithms (interior point methods).

This is all the more interesting as many other problems
arising in array processing are convex. For instance, the
noise or signal power with general form wT Rw where R is
some covariance matrix and w? denotes the conjugate of w
are convex functions. The weight level ||w]||, defined as a
given norm of the weights vector is another convex function.
More generally, convex quadratic functions appear often in
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antenna array design and we see in the next section how they
can be solved.

2 Convex optimization

A convex optimization problem can be defined as the
minimization of a convex function over a convex set. The
important property is that for a convex problem, any local
optimum is in fact global. Furthermore, by using optima-
lity conditions or more generally the theory of duality, it is
possible to obtain lower bounds on the optimal value and an
absolute required precision on the desired results.

It is impossible here to describe more precisely the pro-
perties of convex optimization. Let us simply mention the
recent book by Hiriart-Urruty and Lemaréchal [3]. Even
more interesting is the development of very efficient algo-
rithms called interior point methods. The book by Nesterov
and Nemirovsky [7] is the most complete account on the
subject.

Finally the article of S. Boyd and L. Vandenberghe [9]
shows that convex optimization is of much interest in many
engineering fields. Let us show now how to express an
antenna array pattern synthesis problem as a convex optimi-
zation one.

3 Pattern synthesis as a convex program

In general, it is possible to design optimal antenna array
patterns by solving particular convex optimization problems
of the general form

minimize eTz

subjectto ||A;z + bz-||2 <cfz+d;i=1,... L,
2
where A; € R™*", b; € R™, ¢;,e,2 € R” and d; € R.
These are called quadratically constrained convex quadratic
programs (QCQP). They can be solved with an algorithm
described in appendix A.  Let us notice that if a given




objective f(z) is given, it is easy to replace its minimization
with the following problem

€

minimize ¢
subjectto  f(z) <t
so that the choice of a linear objective is general.
Let us now express the array patern as aquadratic function
in order to recover the general form of QCQP problem (2).
Expression (1) is a linear complex function of the weights
so that its amplitude squared is a quadratic function of the
real and imaginary parts of the complex weights. Generally
a normalization constraint G(fy) = 1 is used so that it is
possible to eliminate one of the weights as

wy = 6—_7'3,\11:]\7 cos 8y (1 __ NZI ,wiej Zr, cos 0())
i=1

Combining the quadratic expression of the beam pattern and
the elimination leads to the general expression || Az + b;||>
for a given |G(8;)|*> where z includes the real and imaginary
parts of the first (N-1) weights. In this case, m = 2 and
n = 2(N — 1). Therefore if we want to constrain the beam
pattern in L different directions we have to choose ¢; = 0
and the constrained level d; fori = 1to L.

A similar expression can be derived for the positive po-
wer wT Rw so that any constrained power can be included
in problem (2) with correspondent ¢ = 0 and d giving the
power constraint. A difference is thathere m = N. The ob-
jective to be minimized is also in general one of the previous
quadratic expressions || Aoz + bo||, so that we can replace
it with the minimization of ¢ = e7z with the constraint
[l Aoz + bol|?> < eT 2. In this case co = e and do = O using
the formulation (3). This also implies that 2 is modified in
order to add the new variable £, so that n = 2N — 1. Finally
we could also add constraints on the weights norm which
can be very interesting for the signal to noise ratio.

We want to show now through some simulation examples,
the interesting applications of interior point methods to an-
tenna array processing.

4 Simulation Examples

Applications of convex optimization to antennaarray pro-
cessing are numerous [6, 5]. We want to show here two kinds
of applications: creating broad gaps in the pattern for intefe-
rence rejection with applications to adaptive beamforming
and designing antenna patterns with robustness properties.

4.1 Adaptive arrays

In adaptive arrays problems, it is generally desired to put
zeros in directions corresponding to interferences. Never-
thess, itis sometimes more efficient to create a broad angular
zone where the pattern is minimum even if not zero.
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4.1.1 Constrained pattern

As an example, we deal with the minimization of the pattern
level around 70° while keeping a OdB level at 90° for a 32-
element linear regular array. The element distance is half
a wavelength. The minimized area is 15° wide around 70°
and we also want the pattern level to remain less than -12dB
in the sidelobe area (except of course the minimized region).

The problem is discretized in the angular directions in
order to be expressed with the general form (2). The figure 1
presents the optimal result. Because the problem is convex,
itis possible to state that within the required precision (which
is here 1079), it is impossible to find weights giving a better
rejection level with the given constraints. It is also possible
to compare the results with a given adaptive technique.

LA L M
80 100 120

1% o 160
Figure 1. Optimized pattern for interference
rejection around 70 degrees. The straight
line is the solution of the convex problem,
whereas the dashed line gives the standard

beamformer.

4.1.2 Constrained adaptive beamforming

We can now have a slightly different approach. Constrained
adaptive beamforming is an important issue as recent articles
show it [2, 8]. The previous simulation could be criticized as
the interference position needs to be known. Let us assume
therefore that the region previously mentionned corresponds
to clutter where the beam pattern level has to be less than
—40dB. We can use the signal covariance matrix R as in
standard array processing. For the simulation, we assume
that this matrix is built with

e asignal of interest in direction 90° with level 0dB,

o four interferences at position 20,45,50,70°, with
identical level (60dB)




¢ a white noise density (-60dB).

Figure 2 gives the result of standard adaptive beamforming
with the same array as above, that is the minimization of
wT Rw subject to (+(90°) = 1. The four interferences are
eliminated as expected. The new problem becomes the mi-
nimization of the signal power w? Rw with constraints on
the clutter zone (less than -40dB), the mainlobe zone (less
than (.08 dB) and the sidelobe zone (less than -12dB) and
witha normalization constraintof 0dB at 90°. Figure 3 gives
the beam pattern for the constrained adaptive beamforming
problem. The interferences are once again cancelled, fur-
thermore the constraints on the clutter zone are achieved.

i3

0 7 g T T T T T T

d°
180

L ‘

20 40 60 80

1(‘)0 1é0 1:10 1(‘30
Figure 2. Interference rejection through stan-
dard adaptive beamforming.

a°
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~100 b L | L
0 20 40 60 80
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Figure 3. Interference rejection through cons-
trained adaptive beamfroming.
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4.2 Robustness issues

The problem of robustness is particularly important for
antenna array design. We will very quickly show here some
results. More details can be found in [4]. The main ideas
come here from a series of papers by Evans [10] and Can-
toni [1] . Here we are just interested in the robustness of
the weights themselves. More precisely, it is known that the
optimal weights have to be discretized for implementation.
What is the influence of the quantization on the optimal
results?

These problems can also be expressed as convex opti-
mization problems and figure 4 shows such an example.
The figure shows the optimal sidelobe level obtained with
quantization steps Aw smaller than 6.1073. This means
that the difference between any quantized weight and the
corresponding optimal weight is less than Aw in modulus.
The straight line corresponds to a 10-element array with a
mainlobe width of 25° whereas the dashed line is for a 30-
element array with a mainlobe width of 25°. For both cases,
the mainlobe direction is 45°. The optimal sidelobe level is
obviously increasing with the quantization step.

221,

Aw

24 ) L L . s
0 1 2 3 4 5 6

x 10°

Figure 4. Weight robustness: optimal side-
lobe level vs. quantization step

5 Conclusion

Through two examples, we tried to show the advantages
of convex optimization. Of course all optimization problems
are not convex, but it is of much interest to recognize convex
ones and use their properties. From our point of view, the
main one is to be able to state if a problem can be solved or
not, and if it can be, to say with an absolute precision what
the optimal result is. Another important question is the




real-time capabilities of such algorithms which are already
very efficient. The advance of digital computers will give
answers although the problem remains opened.

A An interior point algorithm

The algorithm used to solve problem (2) minimizes the
function
p(x,1) = qlog(e"z —1)
L
+ Zlog ((C;‘r.’l, +d;) — || Az + b,-llz) 4

i=1
where [ is a lower bound on the objective, through

2 ¢ initial feasible point ;
l; « initial lower bound;
bk« 0;
repeat {
k+1 &k
minimize ¢(zy) through:
Y — gt 05
repeat {
i+ 11
compute v;, Newton direction of ¢(y;)
then y; 41 « ¥i + ogv; with:
o; = argmin, ¢(y; + av;) ;
} until convergence;
Th4t € Yitls
compute a new lower bound lx1;
}until e zg 4y — lpyr < tol;

Let us add that o; is computed through a line search and
the updated lower bound I}, is obtained thanks to optimality
conditions of the minimized function ¢.
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Abstract

Recursive methods for subspace tracking with appli-
cations to ‘on-line’ direction of arrival estimation, have
lately drawn considerable interest. In this paper, In-
strumental Variable (IV) generalizations of the Pro-
Jection Approzimation Subspace Tracking (PAST) al-
gorithm are proposed. The IV-approach is motivated
by the fact that PAST delivers biased estimates when
the noise vectors are not spatially white. The result-
ing basic IV-algorithm has a computational complexity
of 3mn + O(n?) complez multiplications, where m is
the dimension of the measurement vector and n is the
subspace dimension. The performance of the proposed
algorithms in tracking sinusoids in colored noise is il-
lustrated by computer simulations.

1 Introduction

One aspect of the sensor array signal processing
field that has drawn much attention is the applica-
tion of high-resolution frequency and direction of ar-
rival (DOA) estimation techniques to non-stationary
environments, see for example [1]. A drawback of tra-
ditional subspace methods, in this scenario, is that the
singular value decomposition (SVD) is time consum-
ing to update. A specific example of a successful sub-
space tracking algorithm is the Projection Approxima-
tion Subspace Tracking (PAST) algorithm [5]. The ba-
sic idea of PAST is that a projection like unconstrained
criterion is approximated, which leads to a RLS-like al-
gorithm for tracking the signal subspace. The DOA (or
frequency) estimates can then be taken as the angles

*This work was supported in part by the Swedish Research
Council for Engineering Sciences (TFR).
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of the eigenvalues of a matrix obtained using the shift-
invariant structure of the subspace (Uniform Linear Ar-
ray, ULA). However, PAST assumes that the noise is
spatially white, and tends to deliver biased estimates
whenever this requirement is not fulfilled. This fact is
the motivation of the algorithms proposed herein. The
aim of this paper is to present Instrumental Variable
(IV) generalizations of PAST. For a treatment of IV
methods in the context of identifying linear systems,
see [3]. Like all other IV-methods we require that an
IV-vector, that is uncorrelated with the noise vector,
can be found. As long as this requirement is fulfilled,
the noise vectors can be allowed to have arbitrary (tem-
poral and spatial) color. A certain rank condition must
also be fulfilled. One possible approach to find the in-
struments is to consider an array that is divided into
sub-arrays. Then the outputs of one of the sub-arrays
can be taken as instruments. Then, if the sub-arrays
are sufficiently far apart, the noise in the main sub-
array is uncorrelated with the IV vector. For a discus-
sion on temporal IV’s, see [4]. In the following, R(A)
denotes the subspace spanned by the columns of A and
p(A) denotes the rank of A.

2 Problem Formulation

Let z(t) € C™*1 be the observed data vector. In the
array case, z(t) consists of the samples of an array with
m sensors. In time series (sum of complex sinusoids)
problems, z(t) = [2(t),... ,2z(t + m — 1)]T consists of
m consecutive samples of an observed scalar signal. It
is assumed that z(t) consists of n narrow-band plane
waves impinging on an antenna array or n complex si-
nusoids corrupted by additive noise. Here the subspace
dimension n, n < m, is assumed to be known. Hence,
the following data model will be studied, see for exam-




ple [5]:

2(t) = Ix(t) + e(t) 1)

where e(t) is additive noise with arbitrary covariance
matrix C. = E[e(t)ef!(t)]. The structure of I' may
generally be arbitrary, but in this paper we focus on
the special case of a ULA. The matrix T' is deter-
ministic and is constructed as T' = [y(w1)...7(wa)]
where y(wg) = [1 /¥ ...e/m=YT is a so-called
steering-vector. Implicit in the definitions above is that
the subspace R(L') might be slowly time-varying, i.e.
R(T) = R(T(¢)).

With samples z(t),t = 1,..., we are interested in
deriving an efficient algorithm which estimates R(T')
at time instant ¢, given the subspace estimate at time
instant ¢ — 1 and the sample z(t). Typical for IV ap-
proaches are the following. Assume that there exists
an IV vector £(t) € C**1, I > n such that

Al: Ele®)¢? @) =0

A2: p(E[x(1)€" (1)) = p(Cag) =

Assumption A2 is made in order to ensure that
p('Cz¢) = n, which implies that R(I'Cq¢) = R(T).
For the time series case, this assumption is discussed
in [2]. Assumption A2 is not necessary for guarantee-

ing DOA identifiability, see [4]. However, for reasons of
simplicity, it is assumed to hold throughout the paper.

3 Basic IV algorithm (IV-PAST)

Consider the solutions to (W € C™*"):

V(W)
Elz(t)e" (t)] - WWH Elz(t)e" (t)] = 0

& V(W) =T'C,e — WWHTC, = 0.

2)

Provided A2 is fulfilled, by definition of the orthogonal
projector, all solutions to (2) will be of the form W =
UrT where R(Ur) = R(T'), Ur € C™*™ is orthogonal,
and T € C™*™ is an arbitrary unitary matrix. Thus,
for all solutions to (2) we have that

-1
WWH =TI =T (r” r) rf =UrU¥  (3)

is the orthogonal projector onto the space spanned by
the columns of I'. To derive a practical algorithm, con-
sider the solutions to (compare with (2))

VWD) =Y v (20T k- @)
k=1

~WOWH(2(k)E" () =0,
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where 7 is the forgetting factor (0 < v < 1). Using the
projection approximation idea of [5], h(k) 2 wH (k -
1)z(k), then gives
. s =1
W(t) = C(t)Che (2) (%)
with obvious definitions of the estimates of the covari-

ance matrices. Using the matrix inversion lemma, the
following algorithm is obtained:

h) = WH(t-1)z(t) (6a)

e(t) = z(t)— W(t—1)h() (6b)

W) = W(—1)+e®K) (6¢)

P() = %(P(t—l)—P(t—l)h(t)K(t)) (6d)
H —

K - _ EMOPE-D (69

v+ €7 (OP(t - Dh()

where P(t) = C;; (t). In the above we have assumed
that initial values W(0), P(0) are given. These initial
values only affect the transient behavior and are not
important for the steady-state performance of the algo-
rithm. They can for example be taken as any full-rank
matrices.

Due to the introduced approximations, the columns
of W(t) will not be orthonormal. However, simulations
show that they are 'nearly’ orthonormal. Some appli-
cations may require orthonormal columns, which may
call for a reorthogonalization scheme such as Gram-
Schmidt. However, in our simulations no orthogonal-
ization is performed.

Note that we have constrained the dimension of the
IV-vector £(t) to | = n, which implies that no rank-
reduction of the sample cross covariance matrix is per-
formed. So, why not take W(t) = C.¢(t)? The main

motivation is that the matrix C;; (#) post-multiplying
in (5) forces the columns of W(t) to be ’nearly’ or-
thonormal, resulting in good conditioning. Thus, IV-
PAST can be thought of as a simple way to approxi-
mately orthogonolize the columns of C.e(t). The ba-
sic IV-algorithm will also serve as a preview of a more
general rank-reducing IV-approach described in the fol-
lowing section.

4 Extended I'V-algorithm (EIV-PAST)

A straightforward extension of the previous discus-
sion, I > n, leads to the following criterion

VW) = [« - WOW 0 C.0], O




where W(t) € C™*", C,¢(t) € C™*!. This approach
corresponds to what in [3, Section 8] is called the Ez-
tended IV estimate. Without loss of generality we as-
sume that p(W(t)) = n. With probability 1 (w.p.1),
p(C.¢(t)) = min(m, 1) = 7, but p(Cz) =n <. Con-
sequently, a low-rank approximation of ng(t) is de-
sired. Thus, the following theorem is needed.

Theorem 1 Let ng(t) have the SVD

~ ~ H
NS S PO N I S v,
Cue(t) = USV _[U,, Un][ o ﬁn] v,’,’]
(8)

where U, € C™*". The remaining partitions are of ap-
propriate dimensions. W(t) is a stationary point of (7)
iFf W(t) = ﬁ'T, where U denotes any n left singular
vectors of U and T € C™ " denotes an arbitrary uni-
tary matriz. All stationary points of V(W(t)) are sad-

dle points except when U = U,. In this case V(W (t))
attains the global minimum. Note that for this choice,
WEHWH()C e (t) = ﬁ823Vf, which in the sense of
the Frobenius norm is the best possible rank n approz-
imation of C,¢(t).

Proof: See [2]. O
Once again the projection approximation is applied:

t
WH@)Coe(t) = WH() Y " v~ *a(k)eH (k) (9)
k=1

7t~F WH (k — 1)z (k) €7 (k) £ Cpe(t)
h(k)

~

M-

k=1

which gives the (quadratic) criterion

_ . . 2
VW) = |[Ce) - WChc)] . 10)
The minimizing argument of (10) is given by
ot
W(t) = C¢(t)Chpe(t) (11)

where (.)! denotes the Moore-Penrose pseudo-inverse.
This approach will in most cases improve the accu-
racy of the estimates. For example, in Section 5 we
will see that the tracking capabilities are much more
'well-behaved’ in this case. In Appendix A an efficient
(3ml + O(mn) complex multiplications) recursive up-
dating formula of (11) is given. Note that the matrix
inversion that arises in (14d) is of size (2 x 2), so it is
a simple matter to invert it.
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Figure 1. One realization of the frequency esti-
mates. SNR=5dB, e(t) = I:—ﬁ%ms(t). v =0.97
5 Examples

Consider the scalar signal

2
z(t) = Z ajcos (27 f; ()t + ¢;) + e(t)
J=1

(12)

where ay = a3 = +2. The random phases wj
are independent and uniformly distributed in (-, 7).
Thus, n = 4. Chose m = 8 which gives z(t) =
[2(),...,2(t+ 7)]7. The (temporal) IV-vector is cho-
sen as £(t) = [z(t — M),...,2(t = M — 1 + 1)]T with
M =11. The number of instruments [ is for IV-PAST
! = 4, and for EIV-PAST [ = m = 8. The frequencies
are estimated using the ESPRIT-approach, i.e. the
angles of the eigenvalues of W;__m(t)lem_l (t), where
W .; denotes rows ¢ to j of W. For all algorithms, the
following initial values were used:
P(0) =1, W(0)=[I, 0}

(m—n)xn]T'

(13)
However, the transient is typically not shown. In the
simulations, e(t) = {=5%.=re(t), where ¢~! is the de-
lay operator and e(t) is white Gaussian noise. Note
that for this noise process, condition A1 is violated:
Ele(t)¢? (t)] # 0. In the simulations, y = 0.97. From
Fig.1 we see that the IV based approach clearly re-
duces the bias compared with PAST. Based on this
observation, further simulations with PAST are omit-
ted. The next example illustrates the tracking per-
formance of the algorithms. The performance is also
compared with the performance obtained with the fre-
quency estimates obtained from the n dominant left
singular vectors of C.¢(t). We consider a step-change
in a frequency, see Fig.2 and Fig.3. In Fig.3 we have




0.35

IV-PAST:
EIV-PAST:
SVD:

) s0 100 150 200 250
Sample No.

Figure 2. One realization of the frequency esti-
mates. SNR=8 dB, e(t) = 1—5%.=re(t). 7 = 0.97

Deviation from Orthonormality

Figure 3. Deviation from orthonormality for a
step-change. SNR=8 dB, ¢(t) = 5 5-r(t)-
v =0.97

used the following measure of deviation from orthonor-
mality: |[WH ()W (t) — I,||r. The basic IV-algorithm
shows a tendency to ’over-shoot’, but this behavior is
reduced by EIV-PAST. This is perhaps the major im-
provement offered by the Extended IV method. Note
also that the estimates of the constant frequency are
less affected for EIV-PAST than those of IV-PAST.
Note also that it is almost impossible to distinguish
the EIV-PAST estimates from those of the SVD, ex-
cept during the transient phase.

6 Conclusions

In this paper Instrumental Variable generalizations
of the subspace tracking algorithm PAST have been
proposed. The presented algorithms are able to track
slowly time-varying subspaces in colored noise fields.
One requirement is that we must be able to find an
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IV-vector that is uncorrelated with the noise vector.
Additionally, a certain rank requirement must be ful-
filled. The conclusions are that an IV approach in our
examples improves the results when the noise is not
spatially white.

A Appendix

In this appendix we give the recursive updating for-
mulas for the Extended IV-PAST algorithm, P(t) =

. . -1
(Chg (t)Cfg(t)) . See [2] for a derivation.

W(t) = W(E-1)+e@®)K() (14a)
e(t) v(t) - W(t — 1)®(2) (14b)
X(t) VAR +EOP(E-1)B()  (14c)
K(t) X 1)@ (t)P(t - 1) (14d)
®(t) [w(?) h(t)] (14e)
w(t) Cre(t — 1E() (14f)
H
vaw = | 8O0 v (14g)
Vi) = [Cult-DED 2(0)] (14h)
Che(t) = 7Cre(t—1)+h(®)&" (@) (14i)
Cue(t) = 1Cae(t—1) +2()E" (1) (14))
h(t) = WH(t-1)z(¢) (14k)
P(t) = %(P(t—1)—P(t-1)§(t)K(t))(14l)
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Abstract

The performance of DF-based beamformers is seriously de-
greded in situations where the array is imprecisely calibrated, or
when the spatial coherence of the signal wavefronts is perturbed.
When the calibration errors or perturbation may be characterized
by a set of parameters drawn from a known Gaussian distribu-
tion, a marimum a posteriori (MAP) estimator may be used to
separately estimate the directions of arrival and the perturbation
parameters, resulting in essentially an on-line auto-calibration.
This paper examines the improvement that results from using the
MAP auto-calibrated steering vectors in standard DF-based beam-
Jormers to estimate the received signal waveforms and suppress
unwanted interference. For the special case of additive unstruc-
tured calibration errors and uncorrelated signals, it is shown that
the MAP beamformer is similar in form to so-called “subspace
corrected” approaches.

1. Introduction

All methods for direction-finding (DF) and DF-based
beamforming rely on the availability of information
about the array response, and assume the signal wave-
fronts have perfect spatial coherence. Depending on the
degree to which the actual response or wavefronts dif-
fer from their nominal values, DF and beamformer per-
formance may be significantly degraded. To account
for these types of perturbations, a slightly generalized
model for the array response will be considered in this
paper. The response will be parameterized not only by
the directions of arrival (DOAs) of the signals, but also
by a vector of perturbation or “nuisance” parameters
that describe deviations of the response from its nomi-
nal value. These parameters can include, for example,
displacements of the antenna elements from their nom-
inal positions, uncalibrated receiver gain and phase off-
sets, etc.. With such a model, a natural approach is to
attempt to estimate the unknown nuisance parameters
simultaneously with the signal parameters. Such meth-
ods are referred to as auto-calibration techniques, and
have been proposed by a number of authors, including
(1, 2, 3, 4] among many others.

When auto-calibration techniques are employed, it is
critical to determine whether both the signal and nui-
sance parameters are identifiable. In certain cases they
are not; for example, one cannot uniquely estimate both
DOAs and sensor phase characteristics (unless of course
additional information is available, such as sources in
known locations, etc.). The identifiability problem can
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be alleviated if the perturbation parameters are assumed
to be drawn from some known a priori distribution.
While this itself represents a form of additional informa-
tion, it has the advantage of allowing an optimal maxi-
mum a posteriori (MAP) solution to the problem to be
formulated. In [4] it is shown that, by using an asymp-
totically equivalent approximation to the resulting MAP
criterion, the estimation of the signal and nuisance pa-
rameters can be decoupled, leading to a significant sim-
plification of the problem.

Presumably, any of the above auto-calibration meth-
ods would provide not only improved DOA estimates,
but also calibration information that would be useful
in beamformer implementation. In this paper, beam-
former performance is investigated for the case where
the optimal MAP perturbation parameter estimates of
[4] are used to update the array calibration. Simula-
tions demonstrate that such an approach can result in
a significant performance improvement, measured using
either interference rejection capability or mean-squared
error. In addition, for simple additive unstructured cal-
ibration errors, the MAP approach is shown in certain
cases to yield a beamformer similar to the subspace cor-
rected algorithms described in [5, 6].

2. Mathematical Model and Algorithms

The response of an arbitrary array of m sensors for a
given DOA @ will be denoted by the m-vector a(4, p),
which is parameterized by a vector p € IR? that de-
scribes the array perturbation. The array output is then
modeled by the following familiar equation:

s1(t)

X(t) = [a(el,p) et ' a(edap)] + n(t) (1)

sa(t)
(2)

where s(t) and n(t) represent the received signals and
noise, respectively. It will be assumed that for a given
collect, N samples are taken from the array. Both s(t)
and n(t) are assumed to be temporally white zero-mean
complex Gaussian random processes, with covariances
given by ¢2I and P, respectively. The perturbation term
p is also assumed to be drawn from a Gaussian distri-

= A(6,p)s(t) +n(t) ,




bution with known mean p, (corresponding to the nom-
inal, unperturbed array response) and covariance Q.

Given the above, the covariance of the array output
and its eigendecomposition may be written as

R = A(8,p)PA*(0,p) + 021 = E,A,E} + 0’ E,E],

where A, contains the d largest eigenvalues, and the
columns of the m x d matrix E, are the corresponding
unit-norm eigenvectors. Similarly, the columns of E,
are the m — d eigenvectors corresponding to o?.

2.1. An Asymptotic MAP Estimator

In [4], it is shown that estimates of 6 and p asymptot-
ically equivalent to those from the exact MAP estimator
may be obtained by setting

b= argmein ajMay — fT-1f 3)
ﬁ:po—r—lf, (4)

where
ap = vec(A(6,p,)) » M =0T @ (E,E3) (5)

O = 672AE,A2A7IErAM | | = Re{D;May} (6)
R L 1
T'=Re DpMDP + ENQ 1} (7)
da(8, p) 0a(6, P)]
D, = yoee R 8
4 [ apl app 6.0 ( )

and where 62 and A are “consistent” estimates deter-
mined from some initial estimation step. The above
approach is quite general in that, by proper choice of
p, it can be applied to arbitrary types of model errors.
Another key advantage is that estimation of 8 and p
is decoupled; a search is required only for the d DOA
parameters in 8, and not for p (which is calculated di-

rectly given 9). Other properties of the algorithm are
outlined in [4].
2.2. Optimal Beamformers

The minimum mean squared error (MSE) beamformer
weights are easily shown to be
Wuse = R 'R, = R—IA(B,p)P . (9)

When the desired signal is uncorrelated with the inter-
ference, P is diagonal and the minimum MSE solution is

1Strictly speaking, the equivalence of the above estimator and
the optimal MAP approach only holds for first order errors p — pg
that are “of the same order” as the finite sample effects of the
noise. In other cases (particularly those model errors are domi-
Fant]), a different approach should be used. For more details, see
4, 7).
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just a scaled version of the so-called minimum variance
distortionless response (MVDR) beamformer:

—1.7A
_ R0 (10)
a*(§)R1a(6)

In the general case where the signal and interference
are correlated, the optimal weights depend on the sig-
nals themselves through R, or P, and thus they cannot
be used directly (i.e., without a training sequence, for
example). In the approach of [8], the quantities P and
R in (9) are replaced by their structured ML estimates:

~

P, = Al(R-62D)A}" , R, = AcP,AJ+6°T,

where Ag = A(8,p,), ()} denotes a (left) pseudo-
inverse, and R is a sample estimate of R.

Since calibration errors were not addressed in {8], the
nominal model p, was used to calculate the beamformer
weights. Nevertheless, the method performs well when
calibration errors are present, as recently demonstrated
in [9]. On the other hand, the MVDR approach is well
known to be hyper-sensitive to array perturbations, es-
pecially at high SNR. While ad hoc methods employing
artificial noise injection have been used to combat this
problem, other techniques based on subspace corrected
(SC) weights have found success in experimental sys-
tems [5, 6]. In these approaches, the R~! term in (10)
is replaced by E;A;'E}. This is equivalent to project-
ing a(f) onto the signal subspace prior to forming the
MVDR weights.

One of the goals of this paper is to study the im-
provement that results from using the method of [8] with
A(8, p) rather than A(8, p;), where p is obtained from
the MAP estimator in (4). This approach will be re-
ferred to as the MAP beamformer in the sequel. In the
next section, an interesting connection is made between
the MAP beamformer and the SC-MVDR method. In
particular, it is shown that for simple unstructured ar-
ray errors and uncorrelated signals, the SC-MVDR and
MAP weights have a very similar form.

3. Some Special Cases

For the moment, consider the following simple un-
structured model for the perturbed array response:

A(8,p) = A(B) + A (11)
_ [ Re{vec(A)}
p= [ Im{vec(A)} ] ’ (12)

where the columns of A, denoted a;, are modeled as zero
mean Gaussian random vectors with moments

,k=1,---,d

Elaa;] =vix I , Elad]] =0 ,d.
(13)




This model corresponds to an additive, circularly sym-
metric complex array perturbation that is uncorrelated
from sensor to sensor, but possibly #-dependent. It is
easy to verify that under these assumptions, the covari-
ance of p is given by

|

Q _1[ Re{Y}®I -Im{Y}Q®I
T2 Im{Y}®I Re{Y}xI
where the i, k** element of the matrix Y is v;;.

It is interesting to examine the form of the MAP es-
timate p for this case. To begin with, note that for

the above model p, = 0 and ﬁp = [I jI], where I is
md x md. Thus, p = —T'1f, and

r_ [Re¥I+ ¥ el ~Im{M+ Y1)
 |Im{M+ FY @I} Re(M+ 4T 1aI)
f = [ Re{Mao}

Im{Ma,} ] ’
Using the fact that, for any invertible matrix Z,

[Re{Z} —Im{Z}]‘l _ [Re{z-l} ~Im{Z"1}

(14)

]

Im{Z} Re{Z} Im{Z-'} Re{Z7!}
(15)
it is easy to show that
~ -1 .
Re{ (M+ 4T @1) Na
p=- (16)

Im (M +%Y1® I) - Ma,

A further simplification of (16) is possible that is quite
revealing. Using the definition of M in (5), note that

. -1
(M +¥YT71® I)
. -1 . n R
= (UT + %r-l) ® (E,.E:) + NT @ (E,E?) .
Multiplying this equation on the right by May and sim-
plifying then yields
) Re{ |(I+ 2(XUT)- 1) o (B, E2)] a
p=- e PP :
Im{ [(I+ L(YUT)") 7 @ (B, E2)| a0
(17)
Finally, using (12) and properties of the Kronecker prod-
uct, the MAP estimate of the array response becomes

-1

A(6,p) = A(0) - £ E*A(D) (I + %(TUT)-I) .
(18)
The key point of interest is that, if Y=!/N — 0, then

the MAP estimate of the array response converges to a
subspace corrected version of the nominal response:

,Jm  AG.p)=E,EIAQ).
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Furthermore, if the estimated MAP array response is
used in (10), the MVDR beamformer (10) will converge
to the SC-MVDR approach. The condition ¥~ /N — 0
occurs either with a large data sample, or when the ar-
ray perturbation is large. In either case, the information
provided by the prior distribution of p is of little value,
and is essentially ignored by the MAP criterion. This
observation provides some theoretical justification for
the SC-MVDR technique, which previously had been
derived using ad hoc (but well motivated) reasoning.
However, in cases where the prior cannot be neglected,
using SC response vectors for beamforming will not be
optimal and significant degradation can result. This is
seen in the simulation examples described later.

3.1. Gain and Phase Errors

For arrays composed of nominally identical elements,
a common approach used to describe deviations in the
array response attempts to model the non-uniform gain

. and phase effects of the receiver electronics behind each

antenna element. In this model, the nominal response
is perturbed by an unknown complex diagonal matrix:

Re{g}
Im{g}

where g = diag{G}. The mean of the distribution for
p in this case is given by py = [T 0]7, where e is an
m X 1 vector of ones. For simplicity, in this discussion
the covariance of p will be assumed to be 2 = (¢2/2)I,
which implies that the individual gain and phase errors
are all mutually independent and identically distributed.

The derivation of the MAP estimate of p and hence g
is straightforward but somewhat cumbersome, and thus
will not be presented here. However, the result is quite
simple, and is given by

A@.0)=GA®) , o= | a9

g=(1+02N2Z) e (20)
d
Z=|Y" waab:)aT@)| o (BB, (21)
t,k=1

where uy; is the k, it" element of fJ, (_) denotes conjuga-
tion, and © an element-wise (Hadamard) product. Note
that for very small gain/phase errors where o, — O,

g — e and hence G — I as expected.

4. Simulation Results

In this section, the performance of the MAP beam-
former is studied by means of a number of simulation
examples. The first example involves a nominally unit-
gain uniform linear array perturbed by an unstructured
calibration error in the form of equation (11)-(14) with
T =021 and 0, = 0.2. The array receives 100 samples
of two 20dB SNR uncorrelated Gaussian signals with




-5+

[}
-
(=)

I
-
)

Interference Gain (dB)
13
3

=25}

15 20
Number of Sensors

Figure 1: A Comparison of Beamformer Performance, Unstruc-
tured Calibration Errors

arrival angles of 5° and 15°. Using DOA estimates from
the optimal MAP estimator, the relative interference re-
jection capability of the MVDR, SC-MVDR, and MAP
beamformers was calculated for various array sizes. The
results are plotted in Figure 1 based on 500 indepen-
dent trials. The plot shows the gain of the beamformer
weights for the 5° source in the direction of the 15° in-
terferer (normalized for a unit gain response at 5°). The
subspace correction eliminates the signal cancelation ef-
fect of the MVDR approach, but the MAP beamformer
provides a significant advantage, especially for larger ar-
rays. The above simulation was repeated assuming re-
ceiver gain/phase errors as described by (19), also with
o, = 0.2, and a plot almost identical to Figure 1 was
obtained. Algorithm performance is seen in this case
to depend very little on the type of calibration error
encountered.

When the signals arriving at the array are highly cor-
related, interference rejection is no longer an appropri-
ate performance criterion. In such cases, an optimal
beamformer will attempt to combine correlated arrivals
with the desired signal to improve the quality of the re-
sulting estimate, as measured using (for example) mean-
squared error. To examine beamformer performance for
the case of correlated signals, a two-ray multipath chan-
nel was simulated for various relative delays. A miscal-
ibrated 5-element linear array was assumed to receive
a random QPSK signal from —6°, as well as a slightly
delayed copy of the signal from 6°. Both arrivals had an
SNR of 0 dB, and the array was again perturbed accord-
ing to (11)-(14) with T = o2l and o, = 0.15. For each
trial, MAP DOA estimates were obtained based on 75
samples from the array, and normalized RMS signal er-
rors were computed. The results are plotted in Figure 2
for various relative delays between the two arrivals. The
“uncompensated” approach corresponds to the method
of {8] implemented with A(B, py) rather than A(8,p) as
in the MAP beamformer. The minimum MSE curve was
obtained using a known 75-sample training sequence to
compute the optimal weights, and was included to give
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Figure 2: Root MSE Performance of Various Beamformers for a
Multipath Channel

an idea of the “best possible” performance.

While the SC-MVDR approach can to some degree
compensate for array perturbations, it cannot eliminate
signal cancelation due to the presence of a correlated
arrival, and its performance in this case is quite poor.
For small delays, correcting for calibration errors yields
a 25-30% improvement in RMS error, which translates
into a reduction in symbol error rate of approximately
a factor of 6 (from .041 to .007) for this example.
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Abstract

An iterative algorithm (IVESPA) for narrow-band direc-
tion finding and waveform recovery is presented which is
based on the virtual-ESPRIT (VESPA) of [1]. IVESPA can
handle the case where the data length is short and some
of the sources have very small higher-order statistics com-
pared to others, in which case VESPA needs more data to
localize the weak sources. IVESPA can be applied to uncal-
ibrated and arbitrary-shape arrays provided the array has
two sensors having identical response—the same require-
ment as in VESPA. Results of a real data experiment demon-
strating IVESPA are presented.

1. Introduction

Estimating the parameters of narrow-band signals using
an array of sensors has been a very attractive problem of
research. Typically, the parameters of interest are the di-
rections of arrival, polarizations and the waveforms of the
signals. Existing approaches to this problem can be clas-
sified into two main categories as the so-called subspace-
and nonsubspace-based ones. The subspace-based methods
are usually preferred, because they yield high resolution re-
sults. These methods require eigendecomposition or singu-
lar value decomposition of an array covariance or cumu-
lant matrix, depending on the particular subspace-method
used. From configuration point of view, subspace methods
based on the array covariance matrix are applicable to ar-
rays which have either analytically-known response or iden-
tical but displaced subarrays, or calibrated arrays. Among
the subspace methods, VESPA of Dogan and Mendel [1],
which is based on a cumulant matrix, has the lightest config-
uration requirements: two sensors having identical response
are needed; other sensors in the array may have arbitrary and
unknown responses and configurations.

Like all subspace-based methods, VESPA relies on sam-
ple statistics of the array measurements which suffer from
cross terms due to the presence of multiple sources. When
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some of the sources have very small powers and cumulants
compared to those of other sources, undesirable cross terms
are present in the sample statistics of the weak sources due to
the other sources for small numbers of samples. In this case,
VESPA fails to accurately localize the weak sources. In
practice, this case occurs when the source signals have dif-
ferent constellations and significantly different power lev-
els. Note that the denser the source constellation becomes,
the smaller the cumulant of the signal becomes, because the
signal looks more Gaussian. For example, fourth-order cu-
mulants of unit-power BPSK, 4QAM and 16QAM signals
are -2, -1 and -0.68, respectively. In addition, sources hav-
ing small powers are deemphasized during the calculation of
sample higher-order statistics, because higher than second-
order powers of the data are computed. As an example of
this case, we will present the results of a real data experi-
ment, in Section 3, that involves three sources: a BPSK sig-
nal, another BPSK signal with power —11.23 dB below the
first one and a 16QAM signal with power —22.10 dB below
the first BPSK signal.

The problem is formulated and the solution is presented
in Section 2. A real data experiment is presented in Sec-
tion 3. Conclusions are provided in Section 4. Through-
out this paper, lower-case boldface letters represent vectors;
upper-case boldface letters represent matrices; and, lower
and upper-case letters represent scalars. A (, j) denotes the
¢j-th element of A.

2. Problem Formulation and the Proposed Al-
gorithm

Suppose that we have an M element array containing an
identical response pair of sensors. The other elements of the
array may have arbitrary and unknown configuration and re-
sponses. Consider a signal scenario where there are P in-
dependent narrowband signals having nonzero fourth-order
cumulants which are received by the array from directions
{#1,---,¢p}. Letr(t) = [ri(t),---,rar(2)]T be the re-




ceived signal vector which can be expressed as

r(t) = As(t) + n(t) ¢))
where A = [aj, --,ap]T is the M x P steering ma-
trix, s(t) = [s1(t),---,sp(t)] is the P-vector of inde-

pendent sources and n(t) is a Gaussian noise process inde-
pendent of the signals. The problem of interest is to esti-
mate the directions {1, - - -, ¢p }, and to recover the sources
{s1(t),---,sp(H)}.

Before presenting the solution, we adopt the following
notation for fourth-order cumulant matrices. Given two
scalar processes z1(t) and z(t) and an M-vector process
y(t), we define cum(z1 (), z2(t), y(t), y()7) as the M x
M matrix whose ij-th entry is cum(zy(t), z2(t), (),
y} (t)) where y;(t) and y; () are the i-th and j-th compo-
nents of y(t), respectively.

We propose the following iterative algorithm for esti-
mating the directions of the signals:

Step 1: Estimate the following two fourth-order cumulant
matrices:

C11 £ cum(ry (2), 73 (t), v(t), 2(t)™)

P
= E’Y‘l,p|A(1)P)‘zapapH

p=1
= AAAH V)
and,
C1z £ cum(ra(t), 75 (1), x(t), (1))
P
=3 vaslA(L )P i b2 a0,
p=1
= A®AAT 3)
where {y4,}F-; are the fourth-order cumulants of the
sources; A 2 diag{|A(1, 1)]274,1, ey |A(1,P)|2'y4,p}

and & 2 diag{e~i%sind1 ... e=i%tsindr} (2)is de-

rived using cumulant properties [CP1], [CP31,[CP5], [CP6]
in [2]. Note that the fourth-order cumulant of the additive
Gaussian measurement noise is zero.

Having estimated the matrices Cj; and Cj2, and
assuming only one source is present, the arrival angle
#1 of the most powerful source is obtained by follow-
ing the ESPRIT solution described in the Appendix, as
¢1 = —sin~! (274(fz/fy)). Note that this step is the
same as VESPA except that we assume there is only one
source. The procedure in the Appendix also gives the
steering vector a; of the most powerful source (i = 1,
a; = by). Then proceed by repeating the following steps
fori=2,---,P:
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Step 2: Form a modified signal, r;(t) = N;r(t) where
N; is the left null-space of the M x (i — 1) matrix
A; =lai_q,- -,a1], (A2 = ap). Doing so suppresses the
most powerful (i — 1) sources in r(t).

Step 3: Estimate the following two (M —i+1) x (M —i+1)
cumulant matrices:

Cum(ril(t)’ r;'kl(t):ri(t):ri(t)H) CY
cum(ria(t), v} (8), vi(t), re(t) ) (5)
where r;x (t) is the kth element of (M — i+ 1)-vector r;(2).

Assuming only one source is present, find the modified

steering vector b; of that source following the procedure in
the Appendix.

Ci
Ci2

e ne

Step 5: Compute a; = pinv{N;)b;, where pinv denotes
pseudoinverse.

Step 6: Use the elements of a; corresponding to the identi-
cal response pair of sensors to find the direction ¢; of the ith
source. This is done as follows:

Let the identical response pair be the m-thand (m+1)th
sensors. Then the responses of these sensors to the i-th
wavefront, i.e. the m-th and m + 1-th elements of a;, are in
the form a;, = ¢; and @i(m+1) = cie~ i B¢ sindi where d
is the separation between the m-th and (m 4 1)th sensors.
Consequently, ¢; can be found from a;n, and @;(m+1)-

Step 7: Recover the ith source using a; in an MVDR beam-
former.

3. Experimental Results

In this section we demonstrate IVESPA and compare it
with VESPA by means of the following experiment, using a
set of data provided by our sponsor, CRASP.

Three signals of 1000 symbols each are generated. The
signal types are BPSK, BPSK and 16QAM, and they oc-
cupy a bandwidth of 350 KHz. These signals were used
to modulate wavefronts designed to approximate uniform
plane waves impinging upon an 8-element uniform linear ar-
ray with an element spacing of one half wavelength at 900
MHz. The arrival directions are: BPSK1 at 6.3°, BPSK2 at
25.2° and 16QAM at 40°. The 900 MHz 8-channel mea-
surements were downconverted and sampled at 5.12 MHz.

The eigenvalues of the estimated 8 x 8 array covariance
matrix are as follows:

10* « [6.25,0.47,0.03, 0.00, 0.00, 0.00, 0.00, 0.00] (6)

First, VESPA was applied to this data. VESPA starts by
choosing a guiding sensor pair and estimating two cumulant




matrices. In our case, any two of the sensor measurements
can be used as the guiding sensor pair since the array is uni-
form and linear. We used the first two sensors for this pur-
pose, and estimated the following fourth-order cumulants:

Cs 2 cum(ry(t), 71 (t), v(t), r(t)F) %

Before applying the rest of the VESPA steps we first
checked the singular values of C; and C»; e.g., the singular
values of C; are found to be:

10® % [3.73,0.06,0.004, 0.00, 0.00, 0.00, 0.00, 0.00] (8)

Observe that the the second and third signal singular values
which belong to the second BPSK source and the 16QAM
source, respectively, are very small compared to the first sin-
gular value, which belongs to the first BPSK signal. One
reason why the singular values of the cumulant matrix are
more separated than the eigenvalues of the covariance ma-
trix is that, the computation of fourth-order cumulant esti-
mates requires fourth powers of the data, and these increase
faster than the second powers for high signal levels. Yet an-
other reason is the difference between the fourth-order cu-
mulants of equal-power BPSK and 16QAM signals, as men-
tioned in Section 1. Applying VESPA, we obtained the fol-
lowing angle estimates:

6.37°,6.30°,7.43° )

which shows that VESPA is biased towards the most pow-
erful source.

Second, we applied IVESPA to this data, and obtained the
following angle estimates:

6.34°,25.86°,40.59° 10)

It is seen that the arrival angles are estimated correctly with
IVESPA.

Finally, we show that as the sample size is increased,
VESPA gives accurate estimates. To show this, we simu-
lated the same real data experiment in the computer paying
particular attention to the signal conditions. We increased
the sample size by 500 steps in this range, and for each
sample size, we ran both VESPA and IVESPA on the sim-
ulated data for 10 realizations of the experiment. The av-
eraged direction-of-arrival estimates obtained from VESPA
and the actual values of DOAs are plotted as a function of
data length in Figure 1. It is observed that for short data
lengths VESPA fails to give reliable estimates; however, as
the data length increases, the estimates converge to their ac-
tual values. On the other hand, IVESPA worked fine for all
the values of the data length.

4. Conclusions

We presented an iterative high-resolution cumulant-
based algorithm (IVESPA) for direction finding and wave-
form recovery. Our algorithm is based on VESPA of [1];
however, IVESPA can handle some signal scenarios for
which VESPA fails to localize all the sources accurately.
IVESPA is more general than VESPA in terms of applicabil-
ity, but computationally more intensive. We demonstrated
IVESPA by means of a real-data experiment.

S. Appendix: A procedure for estimating the
arrival angle and steering vector of the
most dominant source

A modified form of TLS ESPRIT [3] for one source:
Step 1: Stack C;; and C;3 intoa2(M —i+1) x (M —i+1)
matrix C as follows:

al Cyh
ct [ o ] (11)

and, perform the SVD of C; keep the first left singular
2(M — i+ 1)-vector of C. Let this vector be u;.

Step 2: Partition u; into two (M — ¢ -+ 1)-vectors uy; and
ui2.

Step 3: Perform the SVD of [u11,u;5]; keep the last right
singular vector of [u;1, u;3]. Let this 2-vector be f.

Step 4: Partitionf as f 2 [ fz ]
fy

Step 5: An estimate of the modified steering vector of the

source is obtained to within a scalar, as b; = u;; — %ulz.
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Abstract

Noise reduction of transportation is of major concern
Jor environmental topics. As regards the railway, high
speed creates new noise sources. This paper describes
the last step of acoustic moving sources study. Localiza-
tion methods using microphones arrays provide positions,
acoustic powers, and spectrums of sources. The proposed
one computes the directivity pattern of sources and gives
a time-frequency representation of the emited signal while
the sources pass the measurement point. Experiments are
carried out to characterize acoustic sources of a high speed
train (TGV) in real operating conditions.

1. Introduction

Localization techniques, using an array of microphones,
provide the acoustic power, the position and the spectrum
of the source. The beamforming can not be used [4] to lo-
calize high speed moving noise sources without modifica-
tions. The dedopplerisation [1] is a method currently used.
Another technique [5] needs a time-frequency analysis of
the output of the array. In this case, the array is focused
at the end-fire. The time localization property of bilinear
time-frequency representation and the spatial selectivity of
the array perform the localization. The directivity pattern
of moving acoustic sources is much difficult to estimate. Its
computation must be performed while the source passes the
measurement area.

In this paper, a method to measure the directivity pat-
tern of a moving noise source is presented. OQOur interest
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only concerns linear trajectories and constant speed move-
ment. Sources are supposed localized thanks to a method
described above. First, the principle of the technique is
described. Then, the array processing technique is pre-
sented. The choice of the bilinear time-frequency distri-
bution is achieved. Some simulations are carried out to test
the method with several directivity patterns. The directivity
pattern of a moving source of a high speed train (TGV) is
computed.

2. Proposed method

2.1 Principle

In order to estimate the directivity pattern of a noise
source, its level is measured for several observation angles
around. When the source is moving, it is difficult to turn
around. On the other hand, the passing source can be ob-
served through several angles. The array processing per-
forms the tracking. Then, the evolution of its level may be
computed by a time-frequency representation. The result is
presented according to the observation angle in the source
space in a polar plot. The figure 1 presents the three steps
of the technique described below.

2.2 Source tracking

Firstly, an array processing focuses the moving source
during its passby. The employed method is very similar to
the dedopplerisation method used in the context of localiza-
tion by [1]. Here, the position of the source is considered to
be choosen. The Doppler effect is removed by re-building




the emitted signal which would be received on sensor in the
case of a non-moving source. The array output of N micro-
phones is computed with the following equation :

M )
Zi:l OfiPi(t - ﬂc'-)

M )

Ei:l %"-‘
where P;(t) is the pressure on the microphone ¢ at time ,
R, is the distance between the microphone ¢ and the focused
source at time ¢, «; is a coefficient of a weighting window
and ¢ is the sound velocity. The computation of the acoustic
pressure at time ¢ -+ %'L needs an interpolation between two
samples. The output signal S(t) corresponds to the emited
signal of the focused source, windowed by a spatial filter

moving around it. The continuous estimation of the signal
level provides the directivity pattern.

5(t) M

2.3 Bilinear transformation of the reconstructed
signal

During the previous tracking, the Doppler effect is not
perfectly removed because of the interpolations, so a fre-
quency modulation remains. An efficient analysis tool must
be able to track the signal level of the output of the array
processing. Flandrin [2] has shown that some transforma-
tions belonging to the Cohen’s class are well suited to track
frequency shifts :

C’Os(t,f)}:///S(t’+%)3*(t’——;-)

e 2T A 2T (=) g Py dndt dr. )

where f(n, 7) allows to build the transformation suited to a

given frequency evolution.

In a first approximation, the frequency evolves slowly ac-

cording to a linear law. Among Cohen’s transformations

(equation 2), the Wigner-Ville (WV) transformation is opti-

mal to follow linear frequency modulation :
T

WVs(t, f) = / S+ DS (= D) ®)
Another property of this transformation, in contrast with the
Fourier transform, is the conservation of the time support of
the signal. This property allows to localize the apparition
time of the signal with more accuracy.

In practice, the Pseudo-Smoothed Wigner-Ville (PSWV)
transformation is used to reduce the interference terms due
to the bilinear structure of the WV distribution.

2.4 Directivity pattern representation
The previous step of the proposed method provides a

time-frequency diagram of the output of the array process-
ing. It corresponds to the levels of the focused point at each
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frequency. An algorithm permits to follow the maximum
level along the modulation curve around the emitted fre-
quency. A reference of the source position is taken at the be-
gining of the tracking. The time axis of the time-frequency
diagram is converted into observation angles in the source
space. The directivity pattern corresponding to the position
and the frequency selected can be drawn in the source space.

3. Simulations

In order to test the described method, some simulations
are carried out. A sine-wave source at frequency f, consid-
ered to be localized, is moving along a linear trajectory at
constant speed v. Its directivity pattern is a cos & shape, like
a dipole source. The received pressure on the microphone ¢
is[3]:

D(6;)

Ri(1 — M, cos(6;))? @

Pi(t) = sin (27 f(t — %—)),

where
vt

and where M, = ¥ is the Mach number, D is the distance
between the trajectory and the receiver and D(6;) describes
the source directivity.

The output of a linear array of 29 microphones spaced
out 6¢cm and located at 6.5m away from the trajectory is
computed. Figure 3 shows the directivity pattern D(6) of
the simulated source in dotted line. The tracking of the
supposed source position is achieved with the equation 1.
The PSWV transformation of the re-builded signal is com-
puted and presented in figure 2. In this simulated case, the
Doppler effect is perfectly removed and the constant source
frequency appears. The time axis is converted into a 8 axis.
At time Os, the source is at the end-fire of the array. The
measured directivity pattern drawn in the source space is
presented in solid line in figure 3. This result can be com-
pared with the directivity pattern of the simulated source
presented on the same picture.

The proposed method has been tested for several directiv-
ity patterns with different shapes and directions and also for
different source speeds. In all cases, it measures a directiv-
ity pattern corresponding to the simulated one.

cos(8;) =

4. Measurements

This method is applied on acoustic sources in a real sit-
uation. The previous linear array configuration is used. Its
frequency range is [2000H z, 4000 H z]. An experiment with
a moving acoustic source for which the position and the fre-
quency are known is carried out. A loudspeaker is fixed on
a high speed train (TGV) and generates two sine-waves at




3000H z and 3400 H 2.

The figure 4 shows the result of the localization [5] of the
acoustic source on the train. The position along the train
is -11.5m. This area is selected to be analyzed with the
proposed method. The PSWV of the tracking signal is pre-
sented on figure 5. The Doppler effect is not perfectly re-
moved. The energy of the signal is concentrated round two
frequencies corresponding to the emitted ones. The follow-
ing of maximum levels along modulation curves permits to
extract two directivity patterns at frequency 3000H z and
3400 H z shown in figures 6 and 7 in the source space. The
frequency evolution of the source during the tracking shows
that the algorithm follows a single source.

For both frequencies, the shapes of directivity patterns are
similar. The movement introduces a small rotation of the
diagrams. This technique has been successfuly applied on
noise sources of the trair.

5. Conclusion

The proposed method is the final step of the study of

moving acoustic sources. A localization technique provides
for each source, the acoustic power, the position along the
train, the height and the spectrum. The time-frequency rep-
resentation of the source tracking permits to characterize the
emited signal. If it is localized in position and frequency,
the directivity pattern of the source can be computed.
The main advantage of this technique is that the measure-
ment is performed in real operating conditions. In this case,
the rotation of the directivity pattern probably due to an
aeroacoustic effect can be observed. Some other effects of
the movement, depending on the source speed for example,
have been noticed. Then, this method improves the under-
standing of phenomena responsible for noise generation.
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Figure 3. Directivity pattern in cos 6 (dB) of the
simulated source (dotted line) and directiv-
ity pattern in dB measured by the proposed
method (solid line).
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Figure 6. Directivity pattern in dB of the
source at frequency 3000 Hz and frequency
error in percent during the tracking of the
maximum level.

Figure 7. Directivity pattern in dB of the
source at frequency 3400 Hz and frequency
error in percent during the tracking of the
maximum level.
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Abstract

In this paper we present a novel method for spatial and
temporal frequency estimation in the case of uncorrelated
sources. By imposing the diagonal structure given in the sig-
nal covariance matrix, it is possible to improve the perfor-
mance of subspace based estimators. The proposed method
combines ideas from subspace and covariance matching
methods to yield a non-iterative frequency estimation algo-
rithm. In a numerical example we show that the estima-
tor has a lower small sample resolution threshold than root-
MUSIC and similar large sample performance.

1. Introduction

Estimating frequencies from uniformly sampled data has
been an active research area for decades. A number of, so
called, high resolution algorithms or eigenstructure meth-
ods have been presented and analyzed in the literature, e.g.,
[4, 6, 7, 8]. One disadvantage with these subspace based
methods is that it is difficult to incorporate knowledge of
the source correlation into the eigendecomposition. In this
paper we propose an estimator which combines ideas from
subspace and covariance matching methods. The objective
is to find a frequency estimator which uses the knowledge
of the signal correlation without significantly increasing the
estimator complexity. In a numerical example we show that
the proposed method has promising small sample perfor-
mance.

2. Problem Formulation

The well known problem of estimating temporal or spa-
tial frequencies from uniformly sampled data corrupted by
additive white noise can be reduced to the problem of de-
termining the parameters in the following mode! of the data
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covariance matrix

R = A(w)SA*(w) + 01 ¢))

where d is the number of frequencies and where w
[w1,+ - ,wq]T. In what follows we assume that d is known,
if unknown, it can be estimated from the data by techniques
described in [2, 9].

In (1), the d x d matrix S denotes the unknown diagonal
signal covariance matrix, 2 is the unknown noise variance
and the m X d Vandermonde matrix A (w) is defined by,

1 e 1
e'iw;[ eiwd

Alw) = @

et{m—1)w1 ei(m;l)wd
where m is the number of sensors in the array processing
case and the data window length in the temporal case.

In the spatial frequency estimation problem, the matrix
A is often parameterized by the direction of arrivals (DOA)
denoted by 8. For a linear array with uniformly spaced ele-
ments, the relationship between w and @ is given by

o Jﬁéiikal

3

where A is the element spacing and ¢ denotes the speed of
propagation of the impinging wave, and where 8}, is mea-
sured relative array broadside.

3. Frequency Estimation

The focus of this paper is on how to estimate the frequen-
cies in the vector w = [wi,---,wq]T. In particular we
would like to use the knowledge that the signals are uncor-
related without increasing the estimator complexity consid-
erably.




The so called subspace estimation techniques rely on the
properties of the eigendecomposition of (1). Let {Ax} de-
note the eigenvalues of R arranged in descending order, i.e.,
A1 > A2 > +-- > An. Since A is full rank, due to its Van-
dermonde structure, and S is positive definite, it follows that

e > o2 fork=1,...,d
A1 =+ =Ap =07, 4
The eigenvectors of R cotresponding to {1, -+, Am} are

denoted with {e;,-- ,en,}. Define

E, =[e1, - ,eq], )
E, =[edt1,- * rem), 6)
A = diag[hr, -+, Ad], )
A, = diag[hayr, , Am] = o1, ®)

where the notation diag[-] refers to a diagonal matrix with
the arguments as diagonal elements. With the notation in-
troduced above we have

R =E,AE: +0’E E}. ©)

Combining the two expressions for R in (1) and (9) yields
the following equality

ASA* + 0’1 = E,AE! +0°E,E;. (10
Since E_ E} = I — E,E3}, it follows that
ASA* =E,AE], 1)

where A = A, — 0?1 By using the vec-operator (d =
vec(D) is a vector obtained by stacking the columns of D)
(11) can be written as (vec(XYZ) = (ZT ® X) vec(Y))

(A° ® A) vec(S) = (ES Q E,) vec(A) (12)

where ® denotes the Kronecker matrix product and where
(-)¢ denotes complex conjugation. Since S and A are diag-
onal matrices with real-valued entries, there exists a (d2 x d)
selection matrix L such that

vec(S) = Ls, vec(A) = LA, (13)
where s and X are vectors consisting of the diagonal entries
of S and A, respectively.

Let R denote a sample estimate of the theoretical covari-
ance matrix, and let E, be the estimated “signal subspace”
obtained from an eigendecomposition of R similar to ).
Replacing E, and A with its estimates in (12) we have

B(w)s = FX, (14)
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where B(w) = (A°® A)L and ¥ = (E§ ® Es) L. We
now suggest to estimate the unknown parameters by mini-
mizing the following least squares criterion

IB(w)s — FAJI%. (15)
Minimizing with respect to s yields
§ =Bl (w)F}, (16)

where Bt denotes the pseudo-inverse of B. Substituting this
back into the criterion we arrive at the following criterion for
finding the frequency estimates

min ||P1J§(w)ﬁ'5\”2 ) an

where P = I — BB is the orthogonal projector onto
the null space of B*. The criterion (17) is in general multi-
modal, rendering the multidimensional search for a global
extremum computationally expensive. In the following we
will use the ideas in [1, 5, 6] to rewrite the minimization in
(17) in a computationally much more attractive form. From
the definition of B(w) it follows that the k*® column of B is
given by

Bk = [1 2k -zZl_lsz;I 1--- z;cn_25z;2 e Z,T_ss PN
cig DT (18)

where z;, = e™*. Observing the shift structure in (18) it is
possible to parameterize the nullspace of B* by the coeffi-
cients in the following polynomial

d
g0+ 9128+t ga=go [ (z—€**) (19
k=1
9o #0.

Define a full rank matrix G of dimension m? x (m? — d),
which depends linearly on the coefficients in (19), such that

G*B=0. (20)

This implies that the columns of G constitutes a basis for the
nullspace of B* and

Pg = G(G*G)"1G* =Pg. 1)

In order to illustrate the parameterization a simple example
is provided.

Example: Assume m = 2 and d = 1, which implies that
the matrix B consists of one column only. The polynomial
(19) will in this case be given by

goz+g1=0. 22)




Using (22) and the shift structure in (18), we can write (20)
as

1

g1 g 0 O 2
G'B=|0 go 0 gi| | ;=0

0 0 g9 9o 1

By using the parameterization described above it follows
that the criterion (17) can be reformulated as
min ||[(G*G)~2G*FA|? , (23)

where the minimization is over the polynomial coefficients

in (19). A two-step estimation procedure can now be de-
vised as follows:

1. Obtain a consistent estimate of {gx } by minimizing the
quadratic function obtained by replacing (G*G)~1/2
in (23) by some positive definite matrix W.

2. Use the estimate of {g; } from step 1 to constructa con-
sistent estimate of (G*G)~1/2, Insert this in (23) and
solve a new quadratic problem. The frequency esti-
mates are then given by rooting the polynomial (19).

It can be shown that this two-step procedure has the same
large sample accuracy as the estimates obtained by minimiz-
ing (17). The main advantage is that we avoid the non-linear
parameter search. For small sample scenarios it can be use-
ful to reiterate step 2 a few times to improve the accuracy.

4. Numerical Example

Here a numerical example is provided to demonstrate the
performance of the proposed method. We consider the di-
rection of arrival estimation of two waves impinging from
angles 6, 10° and 6, 20° on a ULA with 5 ele-
ments separated by a half wavelength. The uncorrelated sig-
nal sources are modeled as white and complex Gaussian dis-
tributed, each with SNR = 3dB. The MSE errors for differ-
ent data lengths are calculated for the proposed method and
for root-MUSIC [3], each MSE are based on 200 indepen-
dent trials. The MSE for 8, is depicted in Fig. 1. This exam-
ple demonstrates the superior performance for small sample
scenarios compared to root-MUSIC.

5. Conclusions

The main idea in this paper was to present a novel method
for spatial and temporal frequency estimation in the case of
uncorrelated sources. By imposing the diagonal structure
given in the signal covariance matrix, it is possible to im-
prove the performance of subspaced based estimators.
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Figure 1. MSE values for 4, versus the number
of snapshots, N: 'x’ — proposed method, 'o’ -
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sources is known and the dotted line is the
CRB without this knowledge.
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Abstract

The purpose of this paper is the passive angular lo-
cation of the wideband sources using an array of sen-
sors. The interest of the knowledge of the antenna
shape, when the treatment is applied on the received
data, is illustrated by the improvement of the signal
to noise ratio and by the increase in of the antenna
directivity.

In this paper,the extension of the propagator method
is presented: an algebraic operator is extracted from
the cross-spectral matrices of the data or from the re-
ceived signals. This technic avoids the rather expensive
eigendecomposition of cross-spectral matrices at each
frequency of the analysis bandwidth used in the known
methods. The results of simulations support the theo-
retical predictions.

1. Introduction

The estimation of direction of arrival (DOA) of multi-
ple wideband signals is a recent problem in array signal
processing. Many techniques have been reported in the lit-
erature [1-3], of which eigenstructure methods are among
the most established. The concept of the signal subspace
processing have been used in the wideband case [1]. The
basic idea is to use a coherent signal subspace estimate
obtained by the eigendecomposition of a frequency do-
main combination of modified narrow-band cross-spectral
matrix estimates. It is shown that the coherent subspace
method is an alternative to incoherent subspace method
that improves the efficiency of the estimation by focus-
.ing the energy of the analysis bandwidth into a focusing
frequency. Similar technic have been proposed in [2],
the originality of this method is the construction of the
focusing operators; which used to transform the signal
subspaces. Generally, these methods have better perfor-
mances than the classical methods but their rather expen-
sive computational load limits their implementation. To
avoid this difficult, several papers [4-9] have been pub-
lished in the aim to reduce the computational load for
the eigendecomposition or to estimate the signal subspace
without eigendecomposition.The propagator method [4-6]
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is one of these methods which is considered as an alter-
native of the MUSIC method.

In this paper, we introduce an extension of the propa-
gator method for broadband sources. The transformation
of the incoherent propagators is performed through focus-
ing matrices. The obtained coherent propagator is used to
estimate the antenna shape and the DOA of the sources.

2. Problem formulation

We consider an array of N sensors which received the

wavefield generated by P wideband sources in the pres-
ence of an additive noise. The array geometry is arbitrary.
The received signal vector, in the frequency domain, is
given by :
r(fj) = A(fj)s(.fj) + n(fj)
Where r(f j) is the Fourier transform of the array ouput
vector, s(f;) is a source vector, n(f ;) is a sensor noise,
and A(f;) is the N x P transfer matrix of the source-
sensor array systems with respect to some chosen refer-
ence point.

It is assumed that the array is unambiguous and cali-
brated, so that the rank of A(f;) is equal to P for any
frequency. The sensor noise is assumed to be indepen-
dent of the source signals and spatially white or the cross-
spectral matrix is known but for a scale factor. In this
case, a prewhitening step is required to create diagonal
noise cross-spectral matrix. The sources are not fully cor-
related.

The cross-spectral matrix of the observation vector at
frequency f; is given by :

T(f,) = A(f)L(f;)A(f;) +o*(f)T
Where the superscript * represents the Hermitian trans-
pose. T',(f j) is the source cross-spectral matrix.

Our aim is to estimate the angles #;,¢ = 1,..., P and
the antenna shape from the received data. In this paper,
the detection of the sources is not treated. We assume that
the number of the sources P is known or can be estimated
[10].

For locating the wideband sources several solutions
have been proposed in the literature and are summarized




as following :

-The incoherent subspace methods: the analysis band-
width is divided into several frequency bins and then at
each frequency the treatment is applied and the obtained
results are combined to obtain the final result.

- The coherent subspace methods: the different subspaces
are transformed in a predefined subsapce using the focus-
ing matrices.

For estimating the antenna shape, the existing methods
treat the narrowband case [5-11]. The temporal methods
have been proposed for the wideband signals but they have
not any success, because they have low spatial resolution.

3. Narrow-band propagator method

In this section, we recall briefly the propagtor method.
We consider the no noisy situation, e.d.:
r(fj) = A(fj)s(fj)’

The direction of the sources matrix is partitioned [4-6]
in two block matrices, let :

X(f;)
A(fy) =

Y(f;)
Where X(f;) is a P x P matrix and Y(f;) is a (N —
P) x P matrix. We assume that the model propagation
vector is such that X(f;) is nonsingular for example the
P first sensors are linear and equispaced then X(f;) is a
Vandermonde matrix.
The (N-P) last rows of A(f;) are linearly dependent of
the P first rows, we can write Y(f;) as :

Y(f) = I (£5)X(f;)

or I*(f;) = Y(£;)X~1(f;)

The P x (N — P) matrix, II(f;), is called the propagator
[4-6].

We define the matrix Q(f;) as :

Q*(f) = [M*(f;) | -1

It is easy to see that :

QH(F)Al;) = ITH(FX(f;) - Y (f;) = 0

or QT (fj)ap,(fj)=0forp=1,.,Pandj=1,... M
The construction of Q(f;) needs the knowledge of the
directions of the sources and the geometry of the antenna.
For this we can not use directly the previous result. With
the former partition the cross-spectral matrix is :

N T11(f;) 11 (f;)I(f;)
L) = [n+<fj>r11(m n+(mru(fj>r’1+<fj)]

[Ta() Taaf)
r) = [pth) ]
T11(f) = X(f;)Ts(f)X*T(f;)

We have for example :

T'12(f;) = Caa(F;)1I(S;)

it follows, the estimate of the propagator is:
I(f;) = Taa " (f;)T12(f)

Other partitions of the cross-spectral matrix are given
in [4-6]. We note that the partition in [4-6] can be lead to
the computational complexity important for P << N.

In a noisy situation, the optimal propagator is obtained by
the constrained minimization problem

{178?) ”f‘lz(fj) - f‘n(fj)n(fj)” forj=1,.., M.

They used the Frobenius matrix norm.

4. Extension of the propagator method to the
wideband signals

4.1. Incoherent propagator

The analysis bandwidth is divided into M frequencies.
The narrowband propagator is applied at each frequency
bin. The final result is obtained by averaging the different
results. The directions of the sources are estimated by
plotting, as function of 8, the following measure :

1 ¥ 1
J(0)=—
©)= 3% LT GG, 7]
4.2. Coherent propagator

The transformation matrices are used at each frequency
bin such that we obtain the focused propagtor at the center
frequency and, then all the transformed propagators are
coherently averaged to obtain the coherent propagator, i.e
D(f;)I(f;) = T(f,) )

Where D(f;) is the focusing matrix, and II(f,) is given
by:

fi(f.) = [RUDFs(2)X* (5] Taalfo)

-1
. ot M S S
with Ts(fo) = 37 X521 X7 (fi)Taa(f5) (X+(f,~))
X(f;) is constructed by using an initial directions of the
sources. I'12(f,) is a block matrix of the cross-spectral
matrix at the focusing frequency f,.
The transformation matrix is given by :
- —1

D(f;) = W(fo)T3,(f) [Ca2(F)T12(f)] " Taa(f)
Using these transformation matrices, all the propagator
can be combined to find the focused propagator, in the
following manner,

1(f,) = & 212 D))

The obtained propagator is, now, used to construct the
coherent matrix, given by :

Q+(f) = [ (£) | -]




We have : Q¥ (f.)ap(fo) = 0, for p = 1,..., P, using
this result, the directions of the sources are given by the
values of 8 for which the function J(6) is maximized,

1 T T
7(8) = S RG] for 6€ [—— —]

5. Algorithm for estimating the antenna shape

The source vectors contain 2(N — 1) unknown param-
eters corresponding to (N — 1) modulus and (N — 1)
phases; however, there are only 2(N — 1) free parame-
ters per source, which permit to treat only one source, to
overcome this difficult two-step algorithm are used :

- In the first step the modulus are eliminated by using
the coherency matrix of the received data, and then by
using the conjugate gradient algorithm the phase distribu-
tion along the antenna is estimated.

- In the second step the phase estimates obtained in the
first step are introduced in the cross-spectral matrix and
then modulus can be estimated.

Note that for seperating different contributions of the
phase estimates to obtain the antenna shape, an algorithm
such that multidimensional Wiener filter can be used.

6. Simulations results

In the following simulations, an antenna of N = 20
equispaced sensors with an arbitrary distorsion compared
to a linear antenna. The source signals are temporally
stationary zero-mean bandpass white Gaussian processes
with the same bandwidth [100, 131H z]. Two source sig-
nals impinge on the array at 6, = 10° and 6y = 12°
respectively, with SN R = 3dB. The analysis bandwidth
is decomposed into M = 32 narrowband components via
FFT.

Fig. 1 gives the arithmetic mean of the obtained results
with the incoherent propagators method with P = 2.

Fig. 2 shows the direction of arrival of the sources with
the coherent propagator described above. We remark that,
in the two cases, the sources are not perfectely localized,
however the coherent method gives a better results that
the incoherent method.

Fig. 3 shows the estimation of the antenna shape using
the proposed method.
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Figure 1 : DOA of the sources using incoherent

method without antenna correction.
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Figure 2 : DOA of the sources using coherent
method without antenna correction.
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Figure 3 : Estimation of the antenna shape.
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Figure 4 : DOA of the sources using incoherent
method after antenna correction.
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Figure 5 : DOA of the sources using coherent
method after antenna correction.

Fig. 4 and Fig. 5 present the bearing estimation of the
sources after the compensation of the phase due to the
sensors displaced. these results show that after the antenna
correction, the sources are exactely localized, however the
coherent propagator is efficient compared to the incoherent
treatment.

This numerical example shows the interest of the estima-
tion of the antenna shape.
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7. Conclusion

In this paper, we have extended the propagator method
to the localization of the wideband signals using an array
of sensors. This method avoids the eigendecomposition of
the cross-spectral matrix. It is based on the transformation
of the narrowband propagators. We have shown that the
knowledge of the antenna shape permits the compensation
of the fluctuations of the phase along the antenna which
improves the localization.
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3.D SPHERICAL LOCALIZATION OF MULTIPLE
NON-GAUSSIAN SOURCES USING CUMULANTS
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1. ABSTRACT

In this paper an eigen decomposition technique based
on cumulant matrices is proposed to passively local-
ize narrowband non-Gaussian sources in the spher-
ical coordinates viz., azimuth, elevation, range, us-
ing stgnals recorded by a centro-symmetric cross ar-
ray. The multiple degrees of freedom available from
cumulants are ezploited to transform the near-field
data into pseudo-data collected by a virtual rectan-
gular array observing virtual far-field sources. The
centro-symmetric array structure is preserved in the
pseudo-data thus allowing efficient real-valued pro-
cessing via Unttary ESPRIT.

2. INTRODUCTION

In recent years, several eigen decomposition algo-
rithms have been proposed for passive source lo-
calization using sensor arrays. However, most ap-
proaches operate under the assumption of far-field
sources and consequently can only estimate the az-
imuth (1-D) or the azimuth and elevation (2-D) us-
ing passive sensing (see for e.g. [4]-[7]) and are based
on the planar wave-front approximation. In many
a situation, sources are close to the array and the
inherent curvature of the waveforms can no longer
be neglected. Recent works on near-field source lo-
calization concentrated on estimating the azimuth
and range only. The algorithms in [2, 3] either in-
volved multiple 1-D searches of a 2-D MUSIC cost
function or Wigner-Ville distributions and provided
poor resolution, while in {1] the invariant proper-
ties of cumulant matrices were used for range and
azimuth estimation. None of the existing works ad-
dress passive 3-D localization which involves the es-
timation of the spherical coordinates, namely az-
imuth, elevation, and range. This paper proposes
a 3-D localization algorithm, which employs cross-
cumulants of signals recorded by a 2-D cross array.

Consider a near-field scenario in which co-
channel, narrowband signals from L sources located
at azimuth, elevation, and range given by the vector
[a1,6:, 7], impinge upon a cross-array aligned with
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the X and Y axes (Figure 1). Although for sim-
plicity, it is assumed that each of these branches
consists of uniformly spaced omnidirectional sen-
sors (with spacing d), the algorithm is applicable
even when the sensor responses are not identical,
as long as the array is conjugate centro-symmetric
(see e.g. [5], for a description of centro-symmetric
arrays). With inter-sensor spacing d and m,n €
{-M - 1,...,—1,0,1,..., M}, the output of the
sensor located at coordinates (md, nd) is :

L
tma(®) = 3 @)™ D tvna®), (1)
=1

where, Tma(l) 2 [waim + ¢oim? + wyin + dyn® +
Bymn] is the phase difference between the Ith
source signal at sensor {m,n} and that recorded
by the sensor located at {0,0}. The parame-
ters {wai, $z1, wyi, Sy1, B} are nonlinear functions of

. : .
[, 61, 71). With §; = —-’;\iﬁ- sin? 0; sin 204 :
wer = — 24 sin b cos oy, wyr = —l’;‘—dsin #; sin ¢,
_ =xd? s 2 2
Gzl = Ay (1 — sin“ 6 cos az) , and
_ nd 22 22
by = 5o (1 - sin® g; sin o).

(2)
The narrowband signals s;(t) are zero-mean, sta-
tionary, mutually independent, with non-zero
fourth-order cumulants, while the sensor noise
Um,n(t) is modeled as zero-mean, Gaussian and
independent of si(t). Localization involves the
estimation of [ay,f,7], given the observations
{uma(t)} for t € {0,...,T —1}. The parameter
vectors wg 2 [wei, .-, werls @y 2 [bz1,-- -, 0Ll
wy & [wy1,...,wyr]’, and @, 2 [$y1,-..,ByL] are
first estimated via subspace methods and then
paired to yield the locations.

ALGORITHM DESCRIPTION

The proposed algorithm is implemented in two
steps. Estimation of {wz, ¢, } ({wy, ¢y}) using the
signals from X (Y) subarray is considered in the
first step. In Step 2, the elements of {wz, ¢, } are

3.




paired with those in {wy,¢,}. This last step is
essential to obtain the final source spherical coordi-
nates [ay, 8, 7.

Step 1 : Estimation of w;, ¢,, wy, and ¢,
From (1), the signals collected by the sensors
along the X subarray u, o(t) are :

U o(t) = Z sl(t)ej[wx1m+¢zxm2] +vmo(t). (8)
=1

The model in (3) coincides with the signal model
corresponding to azimuth and range only (2-D) es-
timation of near-field sources with a 1-D array [1].

In order to gain insight into the possible
source-sensor configuration which gives rise to the
signal mode] in (3), consider a 2-D plane ABCD
containing the X subarray and the lth source as
shown in the Figure 2. From the figure we see that,
as far as the X subarray is concerned, source [ is
at a distance 7 from the array center, at an an-
gle p; = sin™! (sin 6; cos o) with the perpendicular
AB, passing through the array center B and lying
in the plane ABCD. In [1}, a HOS based solution
that yields paired estimates of r; and y; was pro-
posed. The same approach can be applied to the
model in (3) to obtain w, and ¢,..

However, here we take a different view point
and propose a solution which exploits the centro-
symmetry of fourth-order cross-cumulant matrices.
This new algorithm is based on the observation that
as a result of the nonlinear operations involved in
cumulant computation, the data collected from a
1-D linear array (the X subarray) observing near-
field sources can be transformed into pseudo-data
collected from a virtual rectangular array observing
virtual far-field sources. The azimuth and elevation
of these virtual far-field sources will turn out to be
functions of {wsi, ¢} in the original data.

3.1 Transformation of Data
Under the model assumptions, using (3),
and cumulant properties, the fourth-order cross-

cumulant of the signals from sensors at {--m,0},
{m, 0}, {n— 1,0}, {n,0} simplify to :

A *
c4m,7l(T) :Eum{u—m,o(t + T)v um,o(t)’ u:;,—l,O(t)’

Uun o(t)} = Z c4s'(T)ej[2w1‘17n+2¢xln+(wzl"(Prl)]’ (4)
=1

where ¢45,(7) 2 cum{sy (t + 1), s:(¢), s7(¢), si(t)} is
the fourth-order cumulant of the source signal s;(¢).
Notice that the cumulants of the noise term v, o(t)
do not appear owing to the fact that cumulants of
order greater than two vanish when the process is
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Gaussian. By collecting the cumulants c4m »(7) for
—M < m,n < M the matrix consisting of cross-
cumulants is obtained as :

L
Caz(r) = Y caq(r)e! = =%Da(wsr)a’ (¢a1). (5)

I=1

Note that the arrangement in (5) resembles
the response of a rectangular array observ-
ing far-field sources. With p representing ei-
ther wy or ¢;, the partial steering vectors
a(p) = [e‘ﬂ”M,...,e’jzf’,l,ejz",...,ejsz]/ are
centro-symmetric with respect to the array cen-

ter. Then, A(wg,¢z1) & a(wg)a'(¢g1) is the ar-
ray steering matrix for the /th source observed by
a virtual rectangular array of size K x K (where
K = 2M + 1) with elements uniformly spaced at
{md, nd} for m,n € {—M, ..., M}. Consequently,
C4z(7) in (5) can be thought of as the data col-
lected by an array which observes virtual far-field
sources with direction cosines proportional to 2wy
and 2¢.

Instead of arranging the cumulants in a rect-
angular array we can collect them in a single K2 x 1
vector to obtain :

L

Car(T) = D €qy (1) ™0 ag (wer, ¢ar),
=1

(6)

where, ag(wgi, dz1) = vec[A(wgzi, ¢51)] is obtained
by column stacking elements of A(wgy, ¢z). For
the sake of notational convenience we henceforth
denote A(wgi, ¢z1) as A;.  Assuming that the
source cumulants c45,(7) are non-zero for lags 7 €
{0,1..., Tmas — 1}, vectors cq,(7) are collected in a
matrix of size (K2 X Tnaz):

- 1)] ’ (7)

so as to obtain 7,4, “snapshots” from the virtual
rectangular array. Each vector c4.(7) belongs to
S, the signal subspace spanned by the virtual array
steering vectors {a®(wx1,¢x1)}{;l. Thus, the cu-
mulant based preprocessing maps the 2-D near-field
azzmuth-range estimation (using a linear array) to
an equivalent 2-D far-field azimuth-elevation prob-
lem (arising from a rectangular array).

CX = [041'(0)1 c4$(1)7 RN c41‘(Tma:l:

3.2 2-D Unitary ESPRIT

As mentioned earlier, several algorithms
have been proposed to solve this 2-D far-field prob-
lem (see for e.g., [5] - [7]). From (6), we observe that
the problem is two-fold : (i) estimation of the model
parameters wy, ¢ and (ii) pairing the parameters.
We adopt the principle behind the Unitary ESPRIT




algorithm in [5] since it not only results in efficient
real-valued processing but also automatically yields
paired estimates of the model parameters. Owing
to the symmetry in the cumulant definition of (4),
the centro-symmetric property of the original ar-
ray carries over to the new virtual rectangular array
A;. The description of the algorithm in the sequel
closely follows that in [5] but with pseudo-data Cx
instead of the original data.

The partial steering vectors a(ws) and
a(d,1) satisfy the following invariance relationship

(8)

With Lgx-1) denoting an identity matrix of
size (K — 1), the selection matrices J;
[I(k-1) Ox-1)x1] and J2 = Ok -1)x1 Ik -1)] se-
Ject the first and last (K — 1) rows of a(p). Let us
next define a unitary matrix with conjugate centro-
symmetric rows as follows :

ef?3,a(p) = Joa(p), for p=wgor Pl

Al Inn O Jnm
Qk=—%| 0 V2 0O (9)
\/i IIM 0 ——]HM

In (9), Iy is the permutation matrix with ones
on the anti-diagonal. It can be shown that Qg
transforms conjugate centro-symmetric vectors into
real-valued vectors. Thus, the real-valued manifold
corresponding to A; is

d; = vec [Q,’iAzQ’k] . (10)

Consequently, a real-valued signal subspace can be

generated by the columns of D 2 [di,...,dr]. Let

E, be the orthonormal basis for this subspace. Con-
sequently, there exists a real, non-singular T such
that E, = DT. Using (8), the following invariance
relations can be shown to hold [5] :

leEs"I’w = Kw2E51 K¢1ES‘I’¢ = K¢2Es (11)

where, ¥, = T™'Q,T, ¥, =T 'Q,T, (12)

and K1 = Ix @ Ki, Koo = Ik © Ko, Kgy =
K:®Ik, Ky = Ka®Ig, Ki = Re {Q¥_,3.Qx},
K, =Im{Q¥_,J:Qk}.

Equations (11) and (12) are similar to those
that show up in the classical ESPRIT. We can
solve for ¥, and ¥4 via the TLS solution in
the presence of estimation errors which arise when
finite data are used in practice. The matrices
Q, = diagtan(wz1),- .-, tan(wyr)] and g
diag[tan(d)xl),...,tan(qﬁxL)] are thus obtained as
the eigen values of ¥, and ¥y respectively.

The two real-valued eigen decompositions
in (12) can be replaced by the following complex
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valued eigen decomposition which also yields an au-
tomatic pairing of {wz, @, }

TLW, +)jT=T (D +i02)T.  (13)

Thus, the lth parameter pair {wzi, ¢} can be ob-
tained from the { real, imaginary} parts of the Ith
eigen value of ® in (13).

The basis E, needed in the preceding re-
lations, can be obtained from the transformed
data Cxr =(QE ® Q#)Cx which can be shown
to lie in the subspace spanned by D. Thus E;
can be extracted as the L left singular vectors of
[Re(Cx,) Im(Cx:)] corresponding to the L largest
singular values, provided L < min{Kz, 2Tmae + 1}

The signal model for the Y subarray data is
similar to (3) with {w1, ¢z1} replaced by {wyt, dy1}-
Hence, we can obtain the paired estimates of the
parameters {wy,@,} by following the same steps
but using Cy instead of Cx. Since we can only
obtain the paired-parameter estimates with a un-
known permutation ambiguity, we denote this as :

{@s, ¢, ) and {©y, by }-

Step 2 : Pairing of {@, ¢,} and {G:y,(}y}

In computing the location coordinates
[a1, 6;, 7] for the sources, the source parameter from
the {@, ¢, } set has to be paired with the right one
from the {«:;y,(}sy} set so that the nonlinear equa-
tions in (2) can be solved. There are L! possible
pairings for the L sources. Let

u(?) é [U—M—l,o(t), cee uM’()(t), UQY_M_I(t),

...,UQ,_l(t),Ule(t),...,U(),M(t)]l (14)
denote the (2K + 1) x 1 data vector obtained by
stacking the signals collected from the X and Y sub-
array. Let Bax41)x1 be the corresponding array
steering matrix, s(t)rx1 the source vector and v(t)
the noise vector, then the matrix form of (1) is :

u(t) = Bs(t) + v(t). (15)

For each combination {wgp, bop, Wygs $yq}, the “pos-
sible” array steering matrix B, is constructed and
the model mismatch error ep,

ep = ZHB:;u(t)uz,
7

is evaluated where BI-JL is the projection matrix onto
the null space of B,. The combination which min-
imizes e, is then the correct pairing. In contrast
to the least-squares estimation of the source coordi-
nates directly from the data, the minimization here
is only over a parameter space of size L! (finite set).
Finally, the spherical coordinates of the sources are
obtained from {wg, ¢,, wy, ¢, } via (2).

(16)




4. SIMULATION RESULTS

Ezample 1: The algorithm is tested with two non-
Gaussian sources at [, 8, 7] = [45% 45° 1.5)], and
[—20°,10°,2)] and with 2M +2 = 4 elements in each
of the subarrays. The source signals are generated
as BPSK signals filtered with first-order Butter-
worth filter with cutoff frequency of 0.4x. The sen-
sor noise is circular white Gaussian (SNR= 30dB).
The cumulant matrices are estimated from T =
2048 data samples (Tmar = 5). Figure 3 shows
the sensor array configuration, with thick circles
representing the sensor locations. The actual di-
rections of arrival and ranges as seen by the ref-
erence sensor and the estimates obtained from the
proposed method (result of 500 trials) are also in-
dicated. The estimates (mean + std. dev.) are:
[61,01,71] = [44.76° + 0.6,44.48° £ 1.65,1.54) +
0.23] and [dg,0s,79] = [—17.55° + 6.66,10.19° &
0.67,2.031£0.31] confirm the superior performance
of the proposed approach.

Ezample 2: The algorithm is tested on a second
set of sources at [a,0,7] = [20°45° 1.5}], and
[20°,10°,2)] respectively (same azimuth). The
estimates [&y,0;,71] = [20.19° £ 1.68,44.69° +
1.53,1.67A 4+ 0.66] and [, 0,,75) = [18.7° £
7.11,10.41°4£1.18,12.1240.55] are close to the true
values (Figure 4).

Ezample 3: As a final example we consider two
sources arriving at the same elevation angle. Table 1
shows the true parameters along with the estimates
for two sample sizes. As expected, the estimation
variance decreases with larger sample size.

Table 1
Source 1 (a3} f; T
True 457 20° 1.5\
Est :(T=2048) | 47.6 £ 9.8 [ 19.4FE 2T [ T.58A £ 0.19
Bst ((T=4096) | 46.7+ 7.3 | 19.5F 1.9 [ TH58X £ 0.18
Source 2 (s3] [ T2
True —10° 207 1.5\
Est :(T=2048) | —9.1 X+ 2.8 [ 21.7£45 [ T.93X £ 0.58
Bst (7=4096) | —9.4+£22 | 2I.3E 38 [ 1T.9IX£0.31
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Frequency Invariant Beamforming with Exact Null Design'

Peter J. Kootsookos
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Abstract

This paper extends earlier results by Ward, Kennedy and
Williamson [1,2] for the design of broadband arrays with
frequency-invariant (FI) beam patterns to the case where
it is desired to place an exact null in a given direction.
The beamforming is done using appropriately selected FIR
filters.

First, the previous results for generating FI beam patterns
using FIR filters are briefly summarised. Second, new results
which give the conditions required for exact nulls in the
beam pattern for all frequencies in any, possibly non-FI,
beam pattern are given. Third, a method of generating beam
patterns which possess an exact null and which are close, in
an L, sense, to an arbitrary FI pattern is presented. Finally,
some preliminary experimental results which corroborate
the theoretical findings are presented.

1. Problems Addressed

Consider an array of N spatially separated omni-
directional microphones. The array has a nominal aperture
of P half-wavelengths at a given frequency. The signals
from each sensor are sampled at sampling frequency f, and
are filtered using L-tap finite impulse response filters with
frequency responses

L1
H.(f):= Z hn[m]e 2™ ™ n=1,2,...,N.

m=0

This is illustrated in Figure 1.

We wish to select the filter coefficients, h,[m], and the
sensor locations, €, so that the farfield array response from
direction 6

N

A8, f) = ; H,(f)exp (j27rff—csmn sin a> = hTd(6, f)
(1)

tThe authors wish to acknowledge the funding of the activities of the
Cooperative Research Centre for Robust and Adaptive Systems by the
Australian Commonwealth Government under the Cooperative Research
Centres Program.
Supported in part by the Australian Research Council.

105

0-8186-7576-4/96 $5.00 © 1996 IEEE

Darren B. Ward
Dept of Engineering, FEIT, ANU,
Canberra 0200, AUSTRALIA

Robert C. Williamson
Dept of Engineering, FEIT, ANU,
Canberra 0200, AUSTRALIA

Figure 1. The array geometry assumed.

possesses certain properties over the frequency range f €
[fz, ful. The velocity of wave propagation is denoted c.
The N L-dimensional vector of FIR coefficients is

BT = [l[0]...hn[0]... ki [L = 1] ... hn[L = 1]]
and
T eRmn(®) ]
2 [ (6)

d(9,f) =

2l (6)=L+1]

I 2 flrn (9= L1}

is the N L-dimensional delay vector with
n(8) == E:vn sin 6.
¢

The property of frequency invariance has been investi-
gated previously [1-3]. This paper examines obtaining exact
nulls in a beam pattern and the interaction of this property
with frequency invariance.




1.1. Problem One: FI

Suppose it is desired that

AFI(6, f) = A(6) f € [fr, ful-

It was shown in [1] how to choose the z,, locations and that,
when chosen appropriately, the array filters should have the

dilation property
(1)
Tref

where HE(f) is the filter response of the n™ filter and
HP.(f) is the primary filter response at some reference
location .

Ward, Kennedy and Williamson [2] considered two pos-
sible filter bank implementations with this property: a multi-
rate approach and a single rate approach. This paper follows
the single rate approach with the primary filter coefficients
given by

Hy(f) = Hyy

L—
| (L-1)/2

>

RP(m] = —
T ok=—(L=1)/2

hP < [m]sinc (17—1 — k)
in

where +. rﬁ,ﬁ The secondary filter coefficients are cho-

sen so that H3( f) is a differentiator over f € [fr, fu].
The full frequency invariant shading filters are then

hFI[

Flm] = gnht [m] * BS[m]

where * denotes convolution in the m index and ¢, is a
spatial weighting term to account for the (possibly) nonlinear
array spacing.

1.2. Problem Two: END

The first new results of this paper are Proposition 1 and
its Corollary, which are the conditions for Exact Null Design
(END).

Proposition 1 — Condition for a Broadband Null
A broadband null at 6 will be available if and only if either

N
ABND(g £y .= ZHEND(f)ejzwfrn(oo) =0, Vf (2)

n=I

or, equivalently,

N .
- N sin (7[m + 7,,(8
Z REN D] « (zlm + m(80)]) =0,Ym (3)
Z <lm + a(6o)]
where + again denotes convolution in the m index. (]
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Proof. From (1), the array response in direction 6y is

N ;
= Z H,(f)exp (J'Zﬂ'f—cixn sin 00)
n=1
1\7
= > Hy(f)e I )
n=|
N L-1
= YN halmlemi2rimeinimat)
n=1m=0
_ § ih (] + sin (7[m + 7,(60)]) -
m=0 Ln=] i 7!'[771-{—7'.”(00)] ’
(6)

Equation (5) yields (2) and the inverse discrete Fourier trans-
form of (6) gives (3). [ |

It is not immediately clear how (2) and (3) may be easily
enforced. The following result shows this.
Corollary 1 — Integer Delay Property
If 1.(60) is an integer then

N

> halm+ m(60)] =0, Vm (7)
n=1
is a sufficient condition for (3) being satisfied. ]
Proof. If 7,(6y) € Z then (3) becomes
N
> halm]* 8[m + a(60)] =0, Vm
n=I|
where & is the Kronecker delta. [ |

Remark 1: Note that it is always possible to place a null
at 6y = 0 because in this case

T = Za,sinfy = 0, Vn
c

and (3) reduces to requiring

N
> RENP[ =0, V.
n=0
O
Using this idea, the END condition for a null at broadside
may be written as
CTh=0
where
C=I; 1y

where I, is the L x L identity matrix and 1y is the N-vector
of ones.




1.3. Problem Three: FI with END

Designing a frequency invariant array generates array fil-
ters hE7. Placing an exact null imposes the underdetermined
constraints (7). The question of whether it is possible to do
both arises, taking into account the slack of the exact null
constraints.

The approach we take is similar to that of Frost [4]. As-
sume we time-delay beamsteer the FI beamformer to direc-
tion —8y. The effect of this is to move the null to broadside.
In the remainder, we will use the tilde symbol () to indicate
a steered quantity.

The steered filter coefficient N L-vectors, with END con-
ditions imposed, are given by hrienp = Rrr+ h where
. are the deviations from h 7y which allow for exact null
design.

We approach the problem by imposing the exact null
constraints (7) while minimising the cost functional

+r pfe B . 3
/ /f |AF1(6, f) — AFTEND(g, £)[* dfdo

+m pfr
- [ ],
- JfL

where

J =

RTd(9, f)Pdfdé = k. DR, (8)

+r pfv
pi= [ [" aw.pae. f)asae
- fr :

The best . is then found as the solution to the optimisa-
tion problem
min h Dh,
h
subject to CTihpr+ he)=
is

The solution to this problem

R =D"'C [CTD-‘C] “a
where a := ~CThp;.

The matrix D is of full rank, provided no two sensor
locations coincide; C is also of full rank. This solution
has the same form as that presented in [4]. The optimum
unsteered response is then

AFIEND(g £y = (hp; + h)Td(6, f)
where
I ’ITPK[O] 1 T 7’3‘”[—7‘1(00)] 1
h°"‘[01 53 [—w(eo)]
RO = =
h‘,""[L —1] AL — 1 — 11(60)]
RRL—1 ] L AL -1 - 60)] |
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2. Example Array Design
The figures show the resulting array responses for the
following array parameters:

fr = 1000Hz, fy =2000Hz, N =7.

The primary filters in the FI design are chosen to be 5 taps,
the secondary filters are 3 taps long. The END design re-
quired a null to be placed at @ = 7 /4 = 45°. The array was
36cm long.

Because the array was to be tested in a small anechoic
chamber, the farfield design methodology presented here
was modified to allow for a nearfield design. For the results
shown, the source was 2.8 metres from the array. Space
precludes inclusion of the derivations for the nearfield case
[5]. For an alternative technique, see [6,7].

Figures 2, 3 and 4 show array responses at 20 regularly
spaced frequencies between 1000Hz and 2000Hz for the
original FI design [2], an END design with no account taken
of frequency invariance and the FIEND design where filters
are adjusted to cater for the null while minimising the cost
function (8).

Remark 2: Clearly the FIEND responses more closely
resemble the Fl-only response than does the END response;
the value of J for the END response plotted is 0.0487 and
the value of J for the FIEND response is 0.0114. 0O

Time constraints precluded measurement of the array re-
sponses of all designs; only the END design was tested
empirically.

Good correspondence between theoretical and measured
results were obtained for frequencies 995Hz, 1248Hz,
1505Hz, 1748Hz and 2004Hz are displayed in Figure 5.
Some problems were encountered with the response mea-
sured at 1748Hz.

3. Conclusions

We have presented one new result which allows exact
nulls to be incorporated into any broadband array design.
If frequency invariance is required, another new result, pre-
sented here, allows exact nulls while minimising a mean
square error cost between a frequency invariant design and
the design which includes a null.

An exact null design was tested in the laboratory; theo-
retical and measured responses compared favourably.
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Figure 2. Array responses at various frequen-
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Nearfield FIB with END

Figure 3. Array responses at various frequen-
cies for END array.
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Figure 4. Array responses at various frequen-
cies for FIEND array.
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Abstract

When the signal to noise ratio is relatively high, the
angle of arrival of the strongest signal can be estimated
with a very simple method and a small 3-D sensor array.
The differences in the arrival times of the wideband signal
received by spatially separated sensors are estimated
using the polarity coincidence correlation. These time dif-
ferences, i.e. time delays, determine the angle of arrival.
In this paper the effects of quantization of the time delays
are studied. It is found out that this simple method gives
comparable performance to the conventional, direct cor-
relation based methods in the case of a relatively high sig-
nal to noise ratio.

1. Introduction

In this paper a low-complexity method for the estima-
tion of the angle of arrival of a wideband signal with a
small array is developed. The lower the complexity of the
angle-of-arrival estimation method is, the simpler, the less
expensive, and the more reliable is the hardware with
which the method can be realized. A small array was set as
the goal in order to make possible a less expensive array
which could even be used as a part of portable equipment.

A small sensor array is defined here as follows: The
number of sensors is less than 8 and the maximum dis-
tance between any two sensors is less than 20+Tgec, where
T, is the sampling interval and c is the propagation veloc-
ity of the signal. There are no other restrictions to the loca-
tions of the sensors, so they can form a three-dimensional
structure.

In order to achieve a low-complexity method only the
angle of arrival of the signal from the strongest signal
source is estimated. The differences in arrival times of a
wideband signal received by spatially separated sensors
can be estimated one by one if the sensor array is receiving
one dominating wave propagating signal.

This work was sponsored by Nokia Foundation.

0-8186-7576-4/96 $5.00 © 1996 IEEE
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When the signal to noise ratio is relatively high (e.g. 5
dB in the case of a one signal in white gaussian noise) time
delays with which the signal reaches different sensors can
be estimated using polarity coincidence correlation [1],
meaning that signals are quantized to 1-bit representation.
The signal to noise ratio needed to achieve a certain vari-
ance of the time delay estimate depends on the signal and
noise spectrums, cross-correlations of the signal and noise
at different sensors, cross-correlations of noise at different
sensors, the length of the estimation window, and the sam-
pling rate. The variances of the time delay estimates are
given in closed-form expressions for general signal and
noise spectra in [2].

The main advantage of the polarity coincidence corre-
lation is the possibility to use simple 1-bit quantization of
signals. This results that simpler analog automatic gain
control can be utilized when compared to multibit quanti-
zation. Polarity coincidence correlation is also computa-
tionally much simpler and less demanding than direct
cross-correlation methods because it can be implemented
without multiplications [3]. Also the handling of 1-bit sig-
nals requires considerably less memory than that of multi-
bit signals.

The disadvantage of using 1-bit quantization is that
interpolation of the signal values between sampled values
isn‘t possible. Therefore the time delays can be estimated
only with the accuracy of one sampling interval. The error
of the time delay estimates caused by rounding to the near-
est multiple of the sampling interval causes errors to the
estimate of the propagation vector. This kind of error,
which hasn‘t been considered earlier, is studied in this
paper. The study is based on modeling the rounding error
of the time delay estimates by independent white noise
which is uniformly distributed in the interval [-T/2, T/2).

2. Method

In principle the introduced method for the angle of
arrival estimation is as follows: First, signals received by
spatially separated sensors are quantized to 1-bit represen-




time delay
estimation

Y

angle of arrival
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1-bit AD
conversion

analog
signals received

by sensor array

Figure 1. Block diagram of the angle of arrival
estimation method

tation. Then, the time delays between signals in different
sensors are estimated by polarity coincidence correlation.
Finally, these time delays are used to determine the angle
of arrival. The block diagram of the angle of arrival esti-
mation method is presented in Figure 1.

Let us assume that the sensor array is receiving a wave
propagating signal s(z,x) caused by a distant event. ¢ is
the time and x is a three-dimensional vector representing a
location in an orthogonal coordinate system. It is assumed
that s (r,x) can be modeled as a sum of plane waves with
common direction of propagation but with different fre-
quency and amplitude,

s(tx) = ;Alexp(jml(t—ka» )

where j is the imaginary unit, , is the frequency, A; is the

(D

amplitude of the /th component of the wideband signal,
and k is a propagation vector which determines the direc-
tion and the velocity of propagation of the plane wave, k]|
= 1/c. T denotes matrix transpose.

Let the signal received by the ith sensor located at x; be

¥, (1) = s(t,x) +w (1) 2

where w,(#) is the noise component received by ith sensor.
If sensors in the array are identical, then in the ideal noise-
free case the only difference between signals received by
different sensors is the time delay because s (¢, x) is a sum
of plane waves with a common direction of propagation.

The time delay between the signals received by the ith
and the mth sensor is

©)

where x;,, is called a sensor vector. The propagation vector

T T
T =k (x;-x,) =kx,,
k, which gives the angle of arrival, is determined by three
time delays 7, , , n = 1,2,3 if corresponding sensor vec-

tors x; . are linearly independent. In general, k is the

"R

least squares solution of the matrix equation t,, = V,k

(where M is the number of the time delay estimates used in
the estimation of k), i.e.
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T( T -1
k= VM(VMVM) by ©)
where
T
VM = [xilm1 xi2m2 xiMmMJ
- )
tM = [‘Eilml Tizmz TiMmM]

provided that the rank of the matrix V), is 3.
Time delays are estimated using polarity coincidence
correlation: 4, is taken as an estimate of the time delay

1, if it maximizes the sum

R, (d;,) = sign (y;(nT,))sign(y,, (nT,-d, )) . (6)

The estimated delays d,,, can only get values which are

multiple of sampling interval because interpolation of the
signals quantized to 1-bit representation is not possible.
The error of the time delay estimate caused by rounding to
the nearest multiple of sampling interval can be modeled
as white noise which is uniformly distributed in the inter-
val [-T/2,T,/2). The error is assumed to be statistically

independent of the time delay to be rounded and other
time delays.
If all pairs of the vectors x; . contained in the matrix

Vi are linearly independent, meaning that no pair of vec-
tors have equal direction, then the error of the time delay
can also be assumed to be statistically independent of the
errors of the other time delays. In this case the covariance
matrix of the rounding error of the estimate of the time
delay vector is

cov{At,} = 1;51, @)
where I is the identity matrix and
T
My =dy-ty,, dy, = [dilml dimy - dym] - ®

The rounding of the time delays to the nearest multiple of
sampling interval causes errors to the estimate of propaga-
tion vector k. The covariance matrix of that kind of error
can now be estimated because k is calculated by matrix
multiplication of the time delay vector,

T’ -
cov {Ak,} = ﬁ(VLVM) b )

where

-1
Akyy = ky—k , Ky = vL( VLVM) d,,. (10)
The more time delay estimates are taken into account in
the calculation of the estimate of the propagation vector k
the smaller are the variances of the error of the compo-

nents of k,, .




Figure 2. The 3-D grid of
four sensors used in
simulations

The computational load of the proposed angle-of-
arrival method depends on the complexity of the estima-
tion of the cross-correlation functions, the maximum
allowed time delay T,,,,, and the number of the time delay
estimates M used. When nonoverlapping estimation win-
dows and polarity coincidence correlation are used, one
conditional counter increment per sample is needed to
estimate one value of the cross-correlation function. When
conventional direct correlation method is used, one multi-
plication and one addition per sample are needed.
(2d,, ;1) estimated values of the cross-correlation func-
tion are needed for each of the M time delay estimate used,
where

max
TS

T
d = round[—mﬂ). (11)
After estimating the cross-correlation functions their max-
imal values are found out to estimate the time delays.
Finally the propagation vector k which determines the
angle of arrival is calculated by a multiplication of 3xM

matrix and a vector of length M, see equation (10).
3. Simulation Results

A grid of four sensors with equal distance 20T ec

between all sensors (see Figure 2) is used as the array in
the simulations.

Distribution of the rounding errors of the time delay
estimates was verified by simulations. Randomly gener-
ated vectors k(n), n = 1,2,...,100000 were used as a

test sequence. The vectors k(n) were generated as fol-
lows: First three-dimensional vectors were generated,
whose components were independent and uniformly dis-
tributed in the interval [-1,1]. Then the vectors were scaled
so that the norm of each vector was 1/c. The true values of
all the six possible time delays were formed with the equa-
tion

te = Vek, (12)

where

T
Ve = [xIZ *y3 ¥14 X33 ¥ x34]

(13)

T
[112 T3 Tia T3 T T34]

After that the time delays were rounded to the nearest mul-

ks
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Figure 3. Histogram of rounding errors of time
delays

tiple of the sampling interval. Then the error between the
original and rounded time delays was estimated. The his-
togram of the error values is shown in Figure 3. The
assumption of uniform distribution holds very well.

The error of the estimate of k caused by the rounding of
the time delays to the nearest multiple of the sampling
interval were formed by using 3 and 6 rounded time delay
estimates in calculating the estimate of k. In the case of 3
time delays

T
Vy = [xlz *13 x14]
were used.

The sample covariance matrices and the covariance
matrices of the errors Ak, and Ak, formed with equations

(9) and (10) are shown in Table 1. The simulated values
are quite close to the values given by the equation (9). It is
noticed by comparing the covariance matrices of the errors
Ak, and Ak that in this case the use of 6 time delay esti-

ly = [112 T3 T14:|T (14)

mates instead of 3 time delay estimates halved the vari-
ance of the error of the components of the estimated
propagation vector.

The proposed angle-of-arrival method was then simu-
lated. The test signal used was a sum of 5 sinusoids with
frequencies of 0.02x, 0.06m, 0.1%, 0.26m, and 0.46m with
respect to the sampling frequency 2r and with a common
amplitude. The test signal was assumed to propagate as a
plane wave. The same signal but propagating as a plane
wave to a different direction was used as an interfering
signal. The power of the interfering signal, v,(n), was

increasing during simulation,

v;(n) =10 Vg, 15)
where v, is the power of the test signal. The signals
received by the sensors were the sum of the test signal, the
interfering signal and white independent gaussian noise
with variance 0.1v,. All the six possible time delays were
estimated using polarity coincidence correlation presented
in equation (6) with nonoverlapping estimation windows




sample covariance covariance
i (T} iy (T,
(divided by 10°(Z)") | (@ivided by 10%(Z)")
Aks| [02080 -0.1207 -0.0848] | [0.2083 -0.1203 —0.0851
-0.1207 0.3490 -0.0482| | |-0.1203 0.3472 —0.0491
|-0.0848 —0.0482 03809 | | [-0.0851 —0.0491 0.3819
Ak | T0.1043 0.0001 -0.0003 0.1042 0.0000 0.0000
0.0001 0.1046 0.0001 0.0000 0.1042 0.0000
|-0.0003 0.0001 0.1046 0.0000 0.0000 0.1042

Table 1. Covariance matrices of the error of the
estimated propagation vectors

with a length of 10* samples. The length of the test signal

was 106 samples. The estimate of the propagation vector k
was formed with equation (10). The components of the
vector ck, as a function of time are presented in Figure 4.

In this simulation the method tracks the signal from the
strongest signal source when the power of the stronger sig-
nal is about 2.5 times the power of the weaker signal. The
results achieved by using direct correlation instead of
polarity coincidence correlation, i.e. using

Rim (dim) =Z)’,~ (nTs) Ym (nTx—dim) (16)

instead of equation (6), are also presented in Figure 4. The
proposed method gives comparable performance to the
conventional correlation based method.

4. Conclusions

A low-complexity method for estimation of the angle
of arrival of the signal from the strongest signal source
was introduced. The method is based on the differences in
the arrival times of the signal at different sensors. These
differences are estimated using polarity coincidence corre-
lation and as a consequence, 1-bit quantization can be
used. Because of this the required amount of calculation is
significantly reduced when compared to conventional
methods without noticeable differences in the performance
when the signal to noise ratio is relatively high. The intro-
duced method also makes possible quite complex 3-D sen-
sor placements if necessary. These characteristics make
the introduced method very easy and cheap to implement,
and robust to operate. Therefore the method is suitable for
low-cost applications, where it is sufficient to find out only
the angle of arrival of the strongest signal source.
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Figure 4. The components of the propagation
vectors as a function of time, circles: estimated
with polarity coincidence correlation; crosses:
estimated with direct correlation; dashed line:
the propagation vector of the test signal; solid
line: the propagation vector of the interfering
signal
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Abstract

Performance analysis shows the asymptotic optimality
of the MUSIC technique applied to bearing estimation
problems for a sufficiently large number of sensors and
not fully-coherent sources (see for instance [1, 2]). This
implies that a large number of covariance lags has to be
computed; moreover, the computational load of the eigen—
decomposition of large covariance matrices may be too
severe for practical applications.

With reference to uniformly spaced linear arrays
(ULA’s), in this paper we show that the accuracy gain
associated to an increased number of sensors can be al-
ternatively obtained by applying the MUSIC technique to
particular configurations of pairs of ULA’s, referenced to
as subarrays, using a significantly smaller number of sen-
sors.

It is also shown that the accuracy loss of the proposed
method, w.r.t. a full ULA covering the same array aperture,
can be minimized by varying the distance between the two
subarrays.

The provided simulation results shows the applicability
of the proposed method.

1 Introduction

The classical problem in array signal processing is to es-
timate the directions of arrival (DOA) of plane waves with
an array of sensors. Among others, the MUSIC technique
[4] has became popular due to its simple formulation, easy
implementation and high statistical efficiency.

Moreover, performance analysis (see for instance [1, 2])
shows the asymptotic optimality of the MUSIC technique
for a sufficiently large number of sensors and not fully-
coherent sources. On the other hand, a larger array implies
the computation of more covariance lags and a more heavy
computational load of the eigen—decomposition.

0-8186-7576-4/96 $5.00 © 1996 IEEE
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Looking at the application of high-resolution DOA esti-
mation methods based on subspace decomposition, such as
MUSIC, ESPRIT, etc., to reduced covariance matrices, we
analize here a sensors arrangements in pairs of ULA’s; each
ULA will be referred to as a subarray. We will show that
the accuracy of the MUSIC technique is basically saved
when the two subarrays are optimally displaced each other,
having significantly reduced the number of array elements.

This feature is substantially due to the fact that the array
manifold associated to the proposed configurations of pairs
of subarrays retains the same slope near the intersections
with the signal subspace, when the two subarrays are opti-
mally displaced. In fact, the loss of the estimation variance
is limited by the effective aperture enlargement.

To demonstrate this circumstance, we employ the ana-
Iytical expression of the estimation variance given in [1],
particularized to the specific array manifold, as a function
of the subarrays splitting distance. Moreover, by following
the guidelines indicated in [2], we evaluate the angular dis-
tance between the estimated and the true signal-subspaces.
Interestingly, the splitting distance yielding the minumum
angular distance between the estimated and the true signal-
subspaces does not coincides with the splitting distance
yielding the minimum estimation variance. Following the
idea presented in [3], where a linear prediction method is
applied to a pair of subarrays where the reference subarray
is constituted by a single sensor, we show that the optimum
splitting distance is still obtained by using a generalized
minimum prediction error variance criterion also when the
reference subarray is formed by more than one sensor.

Finally, simulation results are provided to show the ap-
plicability of the MUSIC to the proposed configuration of
pairs of subarrays.

2 Performance Analysis of MUSIC applied
to subarrays

For reference, let us refer to a ULA of M sensors spaced
d meters apart. A general configuration of a pair of sub-
arrays consists in forming the first subarray with the first




K sensors and the second subarray with the last K sen-
sors at the other endpoint. Let us pose K = K; +K,. The
subarrays distance is D=A - d where A=(M—K +1).

In other words, the subarray configuration is obtained by
powering off A—1 sensors in the middle of an M sensors
ULA, so as to mantain the overall array aperture (M — 1)d.
The manifold associated to this sensors configuration is
described by the steering vector
a(w) - [1, ejw fe ej(Kl——l)w, ej(K1+A—l)w P
where w = 2rdsin(f)/), 6 is the generic DOA'and ) is
the wavelength.

When L sources are considered, the matrix of the steer-
ing vectors (sometimes referred to as the mixing matrix)

is2

A=[a(w); -, )

and the vector of the array sensors measurements

a(wy)]

X=[Z1; " Ti; Try+A 5 " Tad] is given by
x=A -f4+w 2)
where f = [fy;--, f.]" is the vector of L < M indepen-

dent, zero-mean, circularly complex, Gaussian distributed
sources, and W = [wy ; -+, wy,]" is the vector of observa-
tion noises, circularly complex, zero-mean and Gaussian
distributed, independent of the sources f. Naturally, the
observation model (2) is formally equivalent to the obser-
vation model drawn from the full array configuration; the
mixing matrix A takes into account the actual form of the
array manifold, i.e. how the sensors are located along the
receiver.

The main advantage of using the subarrays configuration
consists in mantaining the same end-to—end array aperture
(M —1)d while using K sensors instead of M, so allowing
for a significant computational saving. This is paid with
an estimate accuracy loss.

To evaluate the accuracy of the estimation carried out by
using the MUSIC technique to the subarrays configuration,
we start by recalling here the (approximate) expression of
the mean squared value of the distance between the signal
subspace, i.e. the range of the mixing matrix A, and an
estimate of the signal subspace obtained from the eigen—
decomposition of the sample covariance matrix

1 &
=-—Zx(z’)-x“ i
N’i:l

1In the sequel, also the parameter w will be, improperly, referred to as
DOA.

2Stnct]y speaking, the matrix A is parameterized by the vector
& = [wi;--, we]\, and it should be denoted as A(J). To avoid a
too cumbersome notation, in the sequel we will omit the dependence on
&, writing simply A.

, ej(M—l)w]T
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where N is the number of available independent snapshots
x(%).

Said o the angle between the subspaces, we report
here the followmg espression of the mean squared value
E{(1-cosa)? } of the subspaces distance, drawn from
[6] (with some rearrangements of terms), in the case of
two uncorrelated sources and white noises

12K-2) 1
1 — N ey et
E{(L - cos)’} 5 =™ e
1+K-SNR-(1+2z)  1+K SNR( - z)
. 5 S 3
(1+2) (1-2)
where SNR = (P + P,)/202 is the sign.al—to—noise ratio

for sources with power P, and P, and white Gaussian noise
with variance 02,
The parameter  depends on the array manifold as fol-

lows:

=V(1-A4)+A-|4| @)

where A=4P; P,/(P; + P;)? depends only on the source
powers and ¢=a"(w; )-a(wy)/ K is the (normalized) scalar
product of the steering vectors a(w) evaluated at the true
DOA’s w; and ws, spaced 6w = (wg—w;)/2 apart.

The correlation coefficient ¢ relates the angular close-
ness of the sources and the form of the array manifold, and
it assumes the following form

1
sin (6w)

. (sin (K16w) + sin (K26w)ej(M+A—1)6w)

= i (K= |

®

The absolute minima of E {(1 — cos@)?} are obtained3for
¢ = 0, i.e. by choosing an array manifold in which the
steering vectors associated to the sources are orthogonal.
Despite of this fact, good signal subspace estimation does
not results in a minimization of the estimation variance.
This is due to the fact that the definition of the angular
distance between subspaces relies on the maximum angle
formed by vectors belonging to the subspaces, while the
estimation variance also depends on the local slope of the
array manifold measured at the intersection with the signal—
subspace; sensible rotation of the estimated subspace is
allowed, leaving the estimation variance quite unaffected.
This fact is also deduced by looking at the expression
of the mean squared estimation error, reported in 1],
L
g2 2 e e s

2N

E{(d}l —wl)2}— ©6)

=L

E |d¥(wr)gr|®

3This is due to the increasing monotonic behaviour of (3) in the interval
|¢] <1 or equivalently, 1 — A <z < 1.




where 3
d(w) = éza(w)

is the vector of the derivatives of the components of the
steering vector, the vectors sy are the eigenvectors of the
true covariance matrix spanning the signal-subspace, A
are the associated eigenvalues, and the vectors g; are the
eigenvectors spanning the noise-subspace, i.e.

L K-L
X=E{x-x"}=zx\k-sk-sz+a2 Z gk - &
k=1 k=1

For two uncorrelated sources the expression of the eigen-
values is

K
A2 = 5 ((P1 +P) £ (P - P)* + 41”11’2|<15|2)+‘72

and (non-normalized) eigenvectors s are

Me2—KP

KPo a(ws) @)

s1,2 = a(wy) +
By carefully looking at (6), we see that the numerator
depends on ¢ in the same way of (3), but the dependence
of the denominator is not still clear. To better investigate
the dependence on ¢ , (6) has to be put in a more suitable
form.
To this end, let us consider two sources having the same
power, i.e. Py =P,=P. After some algebraic manipula-
tions, we obtain

B {(0 -} =
(1—|¢|?) + NSR/K

2 a -] ®
4‘“{”55 }

where NSR = 1/SNR, overbar denotes complex conjuga-
tion, and

' 1| 0
_ 2 T2 -
(-omT-72- 5|55

K-T=14+4+9+---+ (K —1)
+(Ki+A-1)2+. -+ (M-1)°
K-J=14+24+3+---+(K1-1)
+ (K +A-1)+ -+ (M-1)

We can see that now ¢ =0 maximizes the numerator, while
the denominator depends on the derivative of ¢ wr.t. the
DOA spacing éw. It is shown that the subspaces distance
criterion cannot be used to determine a splitting distance
which minimizes the estimation error .

To this purpose, we follow here an alternative approach
based on the minimization of the variance of the prediction
error, as indicated in [3] where the particular case of a
subarray formed by one sensor only has been addressed in

a linear prediction framework. A similar approach has been
also employed in [5] in speech compression applications.
Specifically, denoting by

X1 = [ml P mKllT y Xo = [pr}-A y ' mM]T

the measurements drawn from the first subarray and the
second subarray, respectively, the linear prediction problem
is solved by determining the matrix P which minimizes the
the sum of the variances of the prediction errors

e =X9 — P X1 (9)
The minimum value is readily found as
o2 % E{e"e} = Trace {R2 — RH,RT'Rar}  (10)

where R; = E{x; - x4} is the covariance matrix of the
measurements of the first subarray, Ry = E {x5 - x5} is
the covariance matrix of the measurements of the second
subarray and Ro; = E{x3- x4} is the cross—covariance
matrix between the two subarrays. The absolute minumum
of 02 is found by sistematically varying A.

3 Conclusion

To show how the results of the previous section can
be used in practical applications, simulation results are re-
ported in fig.1, where the mean squared errors relative to '
the Root—-MUSIC estimation of the DOA w; = —wg =3 de-
grees, when a subarray configuration with K3 =Kz=5 is
considered, is plotted vs. the subarrays splitting distance
A. For comparison purposes, the results relative to the full
array with M = K; + K,+A—1 sensors are also shown.
The array spacing is half a wavelength 2d= ), three values
of SNR = -5, 7, 15 dB are considered, the number of
snapshots is N = 100 and averaging over 100 MonteCarlo
runs have been carried out.

We see that optimum performances of the subarrays con-
figuration are obtained for A~ 15 for all the SNR values
and the given source spacing 6w =6 degrees, correspond-
ing to performance of a full array of M =24 sensors, while
only K =10 sensors are used in the subarrays configura-
tion.

In figs. 2 and 3, we report the minimum error prediction
variance (10) and the subspace distance (3) as functions
of the subarrays splitting distance A, respectively. We see
that the optimum splitting distance is correctly indicated by
the minimum prediction error criterion, while the subspace
distance shows a kind of a opposition—of-phase behaviour
in indicating the optimum splitting distancet. This is due
to the lack of dependence on the derivative of ¢ w.r.t. the
DOA spacing 6w, which is inherently taken into account
in the minimum prediction error criterion.




This fact does suggests some opportunities of practical
use of the ideas here presented. For instance, this compu-
tational saving technique can be used in tracking pairs of
sources after a full array discovery stage by applying the
following two step procedure:

o fixed the subarrays aperture K; and K, search over A
for the minimum prediction error. This implies inver-
sion of a reduced order covariance matrix R;, which
can be suitably carried out using Levinson recursion
in the case of a uniformly linearly spaced subarray x;;

apply the root-MUSIC techniques (or other techniques
based on subspaces decompositions) to the KxK co-
variance matrix of the subarrays configuration.

The drawback is constituted by the increased ambiguity
of the subarrays configuration, which is clearly show in
fig.1 for A large enough. In essence, this technique can be
defined as a MUSIC interpherometric method.

This technique can be used also in multiple invariance
ESPRIT context. This is matter of current investigation,
along with a more detailed theoretical analysis.
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Figure 1: Comparison of performance of
MUSIC applied to a full array (continuous
curves) and to a subarrays configuration
(dashed curves) as a function of the splitting
distance A and for various SNR values.

8

-5dB

2dB

LELREILL

-
=5
2

LREALLY |

7dB

8

&

LEARLLL BERALILL

15dB

TIT MWRTIT IRETIYT B ATTT EAIRTTT

N
O

Figure 2: Error prediction variance vs. the
splitting distance.

-
=
H

Q

£

-5dB

St
=)

T Ty

3dB E

7dB ]
15dB
e A/M\

5 10 15 20 25

5

MSE of Subaspaces Distance
)

LR R ALY |

)
8

=]

A

Figure 3: MSE of the distance between the
true and the estimated signal subspaces vs.
the splitting distance.




Increasing Beamsteering Directions Using Polyphase Decomposition

Dani&l W.E. Schobben and Piet C.W. Sommen
Department of Electrical Engineering, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
D.W.E.Schobben@ele.tue.nl

Abstract

In many implementations of digital delay and sum beam-
forming, a sample rate much higher than the Nyquist rate
is used. This allows for many synchronous beamsteering
directions. Severe demands are made upon the analogue to
digital converters however. Several methods have been pro-
posed for reducing the sample rate required. These methods
incorporate the delays that are needed for beamforming in
time domain [3],[4] or in frequency domain [5]. A more effi-
cient methodfor implementing a time-domaindelay and sum
beamformer using polyphase decomposition is presented in
this paper. This method results in significant computational
savings when the desired angular resolution is high com-
pared to the number of sensors used and the number of
simultaneously formed beams.

1. Introduction

Conventional continuous-time beamformers delay all
sensor outputs so that propagation delays are cancelled and
the sensor outputs can be combined coherently. Inadiscrete-
time beamformer, these delays are performed digitally. Us-
ing discrete time delays only allows for delaying over an
integer multiple of the sampling time period. Therefore, the
number of synchronous beam-pointing directions is small
for low sample rates, resulting in a poor angular resolution.
To illustrate this, it is shown in Section 2 that a linear ar-
ray sampled at v times the Nyquist rate can only be steered
to 1 + 2v synchronous angles. A signal arriving from a
non-synchronous direction can be received by steering the
beam to the most nearby synchronous angle or by rounding
the delays needed for beamforming to the delays available.
Both methods introduce severe distortion and poor spatial
discrimination for small v. In Section 3 the concept of inter-
polation beamforming is discussed. This technique uses in-
terpolation, so that the sampling rate is increased artificially.
In this way, delays are obtained which are a fraction of the
unit delay [2]. In Section 4 an efficient method is presented
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for the implementation of the interpolation beamformer us-
ing polyphase decomposition. The resulting complexity is
discussed in Section 5 and a numerical example shown in
Section 6.

2. Linear Sensor Array Beamforming

Although the method to be presented can be applied toall
array geometries, an example of the steering capabilities of
a linear array is discussed. For a linear array the anticipated
propagation delay of a flat wave plane from the first sensor
to the #** sensor equals

idsin 6

Tmax — T = — (1)

where d is the sensor inter-distance, # is the direction of
arrival (DOA) relative to broadside (the direction perpen-
dicular to the line-array), c is the wave plane propagation
velocity and 7max is the propagation delay of the wave plane
between the first and the last sensor. The wave plane incident
to the linear array is depicted in Figure 1. The sensor outputs

Y
T Y T
Figure 1. Wave front incident to a linear array

are sampled at the rate f, = 7 and consequently the beam
can only be steered to the angles which yield a difference
in propagation delay of T} seconds between neighboring
sensors, with u an integer. This delay is cancelled using




time-delays uT, = 412, The beam can thus be steered to

_ w1 [ cuTs
0y = sin (d)

A common choice for d that prevents spatial aliasing is
d = J » Ag being the minimum wavelength of the signal
to be recelved For this sensor inter-distance and a sample
rate equaling f, = 2vfo, it follows from (2) that |u| < wv.
There exist 1 + 2|v] different u that obey this equation,
so the beam can be steered to 1 + 2|v| different angles.
For example, when the sample rate for equals 4 fo (v = 2),
it follows from (2) that the beam can only be steered to
0,+30° and + 90°. A higher angular resolution can be
achieved by interpolating the sampled data. When v = 2
and more than 5 synchronous directions are desired, the
data can be interpolated by a factor M. This is depicted in
Figure 2 for M = 4. The solid lines indicate the sampled

2)

£;[x'T])
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Figure 2. Data interpolation

data and the dashed lines indicate the interpolated data. A
delay of §—L for example can now be achieved by selecting
the 1nterpolated samples indicated with an 1 in Figure 2.
Interpolating with a factor M = 4 now allows for beam-
steering to 0,+7.18°, +14.5°, £22.0°, +30.0°, +38.7°,
+48.6°, £60.0°, £90.0°. Clearly, only one of every M
interpolated samples is used for beamforming.

3. Interpolation Beamforming

The interpolation process for a single beam is depicted
in Figure 3. First the sensor data is sampled at a rate equal
to or exceeding the Nyquist sampling rate. The ** sampled
sensor output z;[kT] is zero padded to obtain Z;[k'T

[4T], fork' =0,+M,12M,...
otherwise

3)
withT) = —L . Then the Z; are filtered with the interpolation
filter H to obtam the 2;

E[k'Ty]) = { gi

&K' = Zh[lT' (' - T3] (4)
=0
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This filter is a Finite Impulse Response filter with impulse
response h[k'T}]. The &; are delayed over p;T! seconds, to
compensate for the anticipated propagation delays, where
the p; Ty are equal to the ;. Then down-sampling is used to

obtain
zi[kT,] = &:[(kM — p;)T]. 5

The beamformer output y[£ 7] is obtained by summing the
shaded «{. Shading means multiplying the z! with weights
to enhance the angular discrimination. To simplify notation,
the shading is not mentioned explicitly in figures and equa-
tions. Multiple beams can be formed from the interpolated
sensor outputs #; without performing additional multiplica-
tions.

Pridham and Mucci [3] argued that the scheme of Figure
3 is equal to the scheme in Figure 4 for the case that only
one beam is formed. This can be seen by interchanging
the filter H and the delays p;T! and placing the filter H
and the down-sampling in Figure 3 after the summation.
This is allowed when all filters are identical, linear and time
invariant. Furthermore, the filter and the down-sampling
may be combined to reduce complexity. It will be shown
in Section 5 that the complexity of the technique proposed
in the following section is lower than that of the scheme in
Figure 4 for high angular precision beamformers. Note that
forming multiple beams is not possible without performing
additional multiplications with this scheme.

4. Polyphase Decomposition

In this section an efficient implementation of the inter-
polation beamformer is presented. First, consider the data
processing in Figure 3 for i*» sensor only. This is depicted
in Figure 5(a). Here the delay p; 77 is interchanged with
interpolation filter H. This is allowed since H is linear and
time invariant. In Figure 5(b) filter H is decomposed into
the filters Hy, Hj . .. Hps_1 using polyphase decomposition
(1]. The impulse responses of the H; can be calculated from
the impulse response of H according to

ey _ [ OBI(K +9)TY), fork! ek
hiIF L] = { otherwise °’ (6)
forj =0,1,..., M~ lands = {0, M, .., M | E5i=L |},

Down-sampling these filter outputs is equivalent to down-
sampling the data and then filtering with H 7, as depicted in
Figure 5(c). The impulse responses of the H { are given by

(7)

fork=0,1,... lL—'—L‘—J Up-sampling with a factor M,

delaying over p; T, and down-sampling with a factor M is
equal to delaying over ££T; if p; is an integer multiple of

R [KTy) = hy[kMT],




M, and equal to zero otherwise. Therefore Figure 5(c) can
be interpreted as choosing the filter H; and delaying over
rT,, where

g = M[%]—Pi,
oo

The resulting scheme is depicted Figure 5(d). The combi-
nation of the delay of 7, and the sub-filter H; represents
an approximation of the desired delay p;7;. The sub-filter
must be of sufficient length to guarantee a good approxima-
tion of the desired delay. In contradiction to this demand,
a long sub-filter requires many multiplications per second,
and introduces a long beamformer delay.

5. Comparison of Computational Complexity

As a measure of complexity, the number of multipli-
cations per seconds of the interpolating filter is considered.
The filter H is assumed to be of length L = wM throughout
this section, with w integer. Although thisis not necessary, it
gives more insight in the calculation of the complexity. The
proposed beamformer is compared with the beamformers of
Figure 3 and 4.

In the scheme of Figure 3, N filters of length L are cal-
culated at a rate f/, with N the number of sensors. Using
f! = M f, and taking advantage of the sparse input data of
the interpolation filters, this yields a complexity of LN f,
multiplications per second. This complexity is independent
of the number of beams to be calculated, and is therefore
efficient when a large number of beams is required. Fur-
thermore, assuming that the filter H is a linear phase filter,
the number of multiplications per second can be reduced
by approximately a factor 2, yielding a complexity of E%L
multiplications per second.

Filter H in Figure 4 is calculated for each beam at a rate
f., since only one of every M samples is needed. The num-
ber of multiplications per second equals LNg f;, with Np
the number of beams to be calculated. Again, assuming that
the interpolation filter is a linear phase filter, the resulting
number of multiplications per second equals LN—ZBL

The scheme in Figure 4 is more efficient than the scheme
in Figure 3 if and only if the number of beams to be calcu-
lated is smaller than the number of sensors (Np < N).

In the proposed beamformer, sub-filters H; are of length
w. For each beam, N sub-filters are calculated at a rate
f,. The total number of multiplications per second equals
wNNgpf, = E%EL In general, it is not possible to
exploit the linear phase property of the interpolation filter
to reduce the complexity further. When M < 2Np and
N < Np interpolating all sensor data as in Figure 3 is most
efficient. Combining all interpolation filters as in Figure 4
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is most efficient when M < 2N and N > Np. Thus the
proposed method outperforms its alternatives when a high
angular resolution is required (M > 2N and M > 2Np).
This scheme has a gain in computational complexity over
its alternatives of 24 and ;2 respectively. The quality of
the delays formed depends on the sub-filter length w = ﬁ .
When both the filter length L and the interpolation fac-
tor M are increased with the same factor, the number of
beam-pointing directions further increases while the com-
putational complexity does not increase for the proposed
method. Consequently, the angles for which beams can be
formed can now be chosen with arbitrarily precision while
maintaining the same amount of multiplications per second.
In practice, the filter length L is limited however since  tab
weights are stored into a finite amount of memory. For the
two alternative methods the computational complexity does
however increase proportionally with the filter length L.

6. Example of Computational Complexity

Next, an example is given to show that the conditions for
the proposed method to be more efficient than its alterna-
tives are easily met. Consider sub-filters of length w = 10,
N = 7 sensors, M = 20 (41 different synchronous angles)
and Npg = 5 (five beams are formed). The main lobes of
the unshaded beam-patterns corresponding to the resulting
synchronous beam-pointing directions are depicted in Fig-
ure 6 for 0 in between 0° and 90°. For negative angles, the
figure is symmetrical. The figure shows that there indeed
is a need for a high M to exploit the best possible angular
discrimination. However, when M is chosen much larger,
the angular discrimination no longer improves, as the suc-
cessive beams merely overlap. In practice, M will be in
between 15 and 40 for a 7 sensor array which is sampled
at the Nyquist rate, and the proposed method outperforms
the alternatives discussed. The complexity for the proposed
beamformer equals wN Np f; = 350f, multiplications per
second for this example. The alternate schemes of Figure 3
and 4 require £¥2> = 700 and Z¥2Se = 500, multiplica-
tions per second respectively. A significant efficiency gain
is thus obtained.

7. Conclusions and Future Research

A new method using polyphase decomposition was pro-
posed for reduced complexity interpolation delay and sum
beamforming. Significant computational savings are re-
ported for beamformers with a high angular discrimination.

In future research the polyphase equivalent scheme will
be used to study relations between interpolation beamform-
ing and other broadband array processing techniques. The
use of an adaptive algorithms to track moving sources us-




ing delay and sum beamformers will also be considered in
future research.

References

[1] AN. Akansu and R.A. Haddad. Multiresolution Signal De-
composition. London : Academic Press, 1992.

[2] TI1. Laakson et al. Splitting the unit delay. IEEE Signal Proc.
Mag., 13(1):30-60, Jan. 1996.

[3] R.G. Pridham and R.A. Mucci. A novel approach to digital
beamforming. J. Acoust. Soc. Am., 63:425-434, Feb. 1978.

[4] R.W. Schafer and L.R Rabiner. A digital signal processing
approach to interpolation. Proc. IEEE, 61:692-720, Jun. 1973.

[5] M.E. Weber and R. Heisler. A frequency-domain algorithm
for wideband coherent signal processing. J. Acoust. Soc. Am.,
76:1132-1144, Oct. 1984.

Figure 4. Beamformer equivalent

120

Figure 5. Interpolation filter (a), polyphase de-
composed filter (b), polyphase equivalent (c)
and compacted polyphase equivalent (d).
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Figure 6. Beampointing patterns for all syn-
chronous directions, M =20and N = 7
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Abstract

This paper describes the design requirements for
& QAM demodulator chip recently developed to be
part of a settop convertor for digital cable television.
The chip demodulates 64- and 256-QAM signals at
a mazimum bit rate of 44 Mb/s and uses blind acqui-
sition techniques so that no training or pilot signals
need be sent by the transmitter.

1 Introduction

The desire to send many bits of data per Hertz
of transmission bandwidth has caused the develop-
ment of sophisticated communications systems us-
ing gquadrature amplitude modulation (QAM). First
introduced for voiceband modems [1] the technol-
ogy was then applied to microwave radio relay sys-
tems [2]. Its success in those applications has led
to great interest in its use for other communication
situations in which economic or regulatory consid-
erations limit the available transmission bandwidth.
An important example of such an application is the
wireless and cable distribution of digital television
[3]. This paper describes how digital transmission
is used for cable television distribution and how the
characteristics of a cable system affect the design of
a suitable demodulator.
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2 Background

Figure 1 shows the block diagram of a digital
communications system. The input data is applied
to the modulator and transmitter, which convert
the data stream into a bandlimited analog wave-
form and frequency-translate it into the frequency
band appropriate for transmission. As the signal
propagates to the receiver it is delayed, attenuated,
and sometimes distorted in a frequency-selective
manner. These effects, on which we will elabo-
rate shortly, are modeled in the block diagram as
the propagation channel. The receiver accepts the
channel output, plus noise and interference inadver-
tantly present at the receiver input, and attempts
to recover the input data sequence.

In the particular case of digital cable television
transmission, Figure 1 gives way to the system
shown in Figure 2. Compressed video, audio, tele-
phony, and even other data services are combined
into a composite data stream and modulated onto
a carrier wave. Many of these, plus, possibly, older
analog television signals, are summed together for
transmission and distribution. Older systems do the
transmission on coaxial cables only. Newer systems
use both fiber optic transmission and coaxial cable
(as shown in Figure 2), while the newest promise to
send the signals directly to the customer premises
on fiber. Once in the customer premises the signal
is commonly split and distributed to many devices,
including VCRs, television sets, and, in the future,
cable modems.

More detail on the “headend” is shown in Fig-
ure 3. The video and audio for a particular tele-




vision source are digitized and compressed. The
resulting output data rate depends on the type of
compression used and the desired fidelity of the re-
ceived image and sound. Quality comparable to
high-SNR NTSC transmission can be obtained us-
ing MPEG-2 compression, yielding an average bit
rate of about 6 Mb/s. High definition television
(HDTV), with its larger screen size and greater res-
olution, requires about 25 Mb/s. Since the modu-
lation anticipated (more on this shortly) can carry
a raw data rate of 30 to 40 Mb/s, this permits sev-
eral digitized video/audio sources to be multiplexed
together on a single “digital sign ?_ This multi-
plexing can be done deterministically, that is, by
giving each of the sources a fixed bit rate alloca-
tion, or it can be done dynamically, allowing the
number of sources, their quality, and the types of
sources to be managed by the headend. For ex-
ample, one HDTV and two normal resolution TV
sources might share the bandwidth, or, conversely, a
sports program with a high degree of motion might
be allowed to use some of the bits allocated to a
video signal with a more static image.

Once the 30 to 40 Mb/s stream of multiplexed
and possibly encrypted signals is put together, for-
ward error correction bits are added and the com-
posite stream is modulated onto a carrier. These
modulated signals have a bandwidth less than 6
MHz so that they can be frequency-division multi-
plexed (FDM) onto the cable transmission medium.
By adhering to the 6 MHz spacing, compatibility is
maintained with older analog TV transmission sys-
tems. Note also that the 30 to 40 Mb/s carried on
the modulated signal need not be used completely
(or even partially) for television. Such a “data pipe”
is usually refered to as a “cable modem”, and can be
used for a variety of services, including high-speed
Internet connectivity from a server to a computer
at the home or office.

In comparing Figure 1 with Figure 2 we see that
the propagation channel includes all of the cabie
distribution equipment from the modulator output
to the demodulator input in the destination device,
and therefore includes all up- and downconverters,
bandpass filters, combiners, trunk amplifiers, coax-
ial cable runs, and splitters. How these devices
and equipment disrupt the signal’s transmission can
be understood after a discussion of the method by
which the digital data is prepared for transmission
over the analog medium.

Modern bandwidth-efficient transmission of digi-

tal data is based on the concept of sending pulses [4].
The input data is partitioned into sets of N bits
and those bits are then used to determine the phase
angle and peak amplitude of the pulse. The pulse
shape itself is chosen to ensure a bandlimited signal
spectrum. The receiver is designed to determine the
amplitude and phase of each incoming pulse, deter-
mine which of the 2V possibilities has been sent,
and then report out the corresponding N bits. If
the pulses are transmitted at the symbol or baud
rate of fz symbol per second, then the transmiss-
sion system can carry N - fp bits per second.

The effect of the cable transmission plant is to
disperse the transmitted pulses in time. Its effect
on a QAM signal is often assessed by looking at the
signal’s constellation. This is an overlay of many
received symbol measurements. In the absence of
noise, interference, and dispersion, and with perfect
estimation of the signal’s amplitude, carrier, and
timing, the received measurements from a 64-QAM
signal should look as they do in Figure 4(a). The

. presence of dispersion alone is sufficient to produce
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the degradation seen in Figure 4(b). In the ab-
sence of additive noise and receiver imperfections,
the displacement between an actual received con-
stellation point and the transmitted point shown in
Figure 4(a) is a combination of the channel disper-
sion’s effect on the particular pulse being consid-
ered and the intersymbol interference (ISI) induced
by the channel on the adjacent pulses. Some of the
received symbols are displaced sufficiently that the
nearest neighbor decision rule makes errors. Be-
cause of the potential for frequent errors from this
source, the demodulator requires an adaptive equal-
izer of some type to compensate for the effects of the
cable plant’s dispersion.

In further comparing Figure 1 with Figure 2 we
see that the noise and interference includes all noise
introduced by the active components of the sys-
tem plus the interference produced inside the sys-
tem and received from outside it. The noise is usu-
ally controlled by careful design and maintenance of
the system. The interference, usually refered to as
ingress, is combatted by minimizing any intermodu-
lation distortion within the system and by ensuring
good maintenance of the system to prevent strong
externally generated signals, such as from radio or
broadcast television, from entering the distribution
system.




3 The Demodulator’s Requirements

In light of this background, the requirements for
the demodulator can be enumerated:

¢ The modulator/demodulator pair must reli-
ably carry as much data as possible over cur-
rently available cable systems. The use of
QAM on a 6 MHz channel limits the Baud
rate to about 5 MHz. The noise floor present
in a well-engineered conventional cable system
limits the QAM constellation size to about
256. For poorer systems, a constellation size
of 64 might be used to add some “system mar-
gin” at the expense of 25% of the available
transmission rate. Thus, the demodulator is
required to handle up to 256 QAM with a
maximum baud rate of 5.5 MHz or so.

The demodulator must operate in a non-
cooperative manner, that is, it should not
need any special training or synchronization
from the transmitting modulator. Further,
the user should be able to change channels
rapidly (“channel surf”’ ) without subtantial re-
acquisition delays being introduced by the de-
modulator.

The demodulator needs to be cheap and to
operate with other cheap components.

nal impairments to which it may be subjected.
These include both the interference (inter-
modulation distortion and “ingress”) and the
signal dispersion introduced by the distribu-
tion plant itself. Conventional demodulator
design cannot inexpensively deal with large
amounts of interference and therefore these
are traditionally handled by vigilant system
maintenance. Channel dispersion, however, is
a fundamental characteristic of a distribution
plant and the demodulator must compensate
for it. In order to reach a suitable specifica-
tion for it, however, we must first determine
the degree of dispersion present in cable TV
systems.

Finally, the demodulator must handle the sig- -
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4 Characterizing The Cable Televi-
sion Propagation Channel

While modeling of the cable propagation channel
can and has been done analytically, the approach

.taken here is to measure it in real cable television

systems. We first describe the method employed
and then the results.

In practical circumstances the propagation char-
acteristics of the channel between a transmitter and
receiver are not known a priori. Further, a one-time
calibration of a channel’s characteristics is not use-
ful since channels are known to vary with time ow-
ing to influences from environmental and manmade
factors. To deal with this time variation it is use-
ful to have channel modeling techniques which can
use “signals of opportunity” to probe the channel to
be analyzed. The method used here, first described
by Gooch and Harp [6], uses a demodulator to ob-
tain symbol estimates from a PSK or QAM signal
of opportunity and then uses these symbols along
with the received signal itself as inputs to a chan-
nel modeller. This scheme is shown in Figure 5.
The key to this technique’s success is the use of a
blind equalizer in the demodulator to “open the eye”
enough for the demodulator to initially acquire the
signal. Once acquisition has occured, the demodu-
lator begins to use its own symbol decisions as the
desired input to an LMS-directed equalizer update
algorithm. (See Wolff, Treichler, and Gooch [10} for
an early description of such a demodulator.) These
symbol decisions are, of course, the same regener-
ated symbols needed as one of the inputs to the
modeling stage.

Gooch and Harp [6] used a LMS-directed FIR
adaptive filter to estimate the pulse response of the
propagation channel. The filter’s input is the stream
of regenerated symbols, interpolated with alternate
zeros to create a fractionally-sampled input rate of
2fp, where fp is the symbol or Baud rate of the
received signal. The reference or desired input to
the adaptive modeller is a version of the input sig-
nal delayed to compensate for the processing delay
of the demodulator. The LMS algorithm is used
to adapt the coefficients of the complex-valued fil-
ter pulse response. The convergent solution is well
known to closely approximate the least-squares fit
between the actual channel and the model. The
error signal e(k) contains unmodeled components,
misadjustment noise, and receiver noise. In pass-
ing it should be noted that this error signal can be




spectrum analyzed to reveal the presence and char-
acteristics of additive signal impairments such as
cochannel interference [6]. Use of this approach to
identify ingressinto a cable system will be discussed
in Section 6.

An example of the result of this modeling proce-
dure is shown in Figure 6. The power spectrum
of a 64-QAM, 5.1 MBaud signal appears in Fig-
ure 6(a). Adjacent to it is the power transfer func-
tion of the estimated channel. This was obtained
by first developing an FIR model of the channel
pulse response, as described above, and then com-
puting the log magnitude square of the FFT of that
complex-valued pulse response shown in Figure 7.
Note the close correspondence of the channel shap-
ing between the received spectrum and that of the
model.

By inspecting the log magnitude of the estimated
pulse response in Figure 7, we can see that the chan-
nel does not conform to a simple two- or three-ray
specular model but in fact the received signal is

the combination of many delayed and scaled ver-

sions of the transmitted symbol stream. A more
detailed examination of many such channel esti-
mates indicates that the dispersion can be broken
into two classes, “microreflections” and “macrore-
flections”. The macrorefiections have large ampli-
tude compared with the transmitted signal and have
relative delays on the order of microseconds, indi-
cating a strong reflection from the end of a long im-
properly terminated stub. (Recall that the round-
trip delay on a coaxial cable is about 18 microsec-
onds/mile.) The microreflections are multitudinous
but small in amplitude, stemming from a large num-
ber of lower level reflections on short cable sections
within the system. The macroreflections must be
found by the maintence crews and removed, since
building the demodulator to compensate for them
is uneconomical. The microreflections, however, are
a fact of life even in a well-designed, well-maintained
system and must be accommodated by the demod-
ulator. Examination of a large number of the chan-
nel models of the type seen in Figure 7 shows that
a reasonable estimate of the maximum delays seen
for a cable system’s microrefiections is 2 to 3 mi-
croseconds. A database (to be resident in the Na-
tional Science Foundation’s Signal Processing Infor-
mation Base (SPIB) at Rice University and linked to
http://www.ee.cornell.edu/faculty/ RJohnson.html)
includes a representative sample of the received sig-
nals used to draw these conclusions.
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Given this estimate for the maximum delay
spread of 3 microseconds for the cable propagation
channel, how long does the demodulator’s equalizer
need to be? This question has been recently ad-
dressed in [9], which discusses the recent technical
result that a fractionally-spaced equalizer need be
no longer than the maximum expected delay spread
of the channel. In light of this result the length of
the fractionally spaced equalizer should be at least
16 symbols long (so the data rate of 5.1 Mbaud <
16 symbols / 3 microseconds).

5 The Demodulator Design

Many different approaches have been used to de-
sign a demodulator for digital signals. An indics-
tion of the choices available in this design process
are shown in Figure 8. In general the demodula-
tor must (1) bandpass filter the incoming signal,
(2) adjust the input signal amplitude, (3) estimate
and remove any carrier component, (4) equalize the
channel’s dispersive effects, (5) “slice” the input sig-
nal to obtain pulse amplitude and phase measure-
ments, (6) decide which pulse amplitude and phase
was actually transmitted, and (7) convert that deci-
sion into the associated bit pattern. Demodulators
for digital cable transmission incorporate forward
error correction as well.

Even though it is only one component of the de-
modulator, the adaptive equalizer’s design takes on
special importance for three reasons: (1) its perfor-
mance is crucial to the goal of maximizing the trans-
mission rate through the dispersive channel, (2) it is
the most complicated of all the demodulator’s com-
ponents, and (3) it consumes a large fraction of the
computation needed to implement the complete de-
modulator. Amplifying on this third point, it is
not unusual for the adaptive equalizer to consume
more than 80% of the multiply/add cycles needed
to demodulate a 256-QAM signal. Given that, it
becomes an important design consideration to limit
the length of the equalizer to only that required to
handle adequately the range of propagation chan-
nels expected to be encountered.

With an eye toward minimizing and simplying
the computation needs, early demodulators used so-
called T-spaced equalizers [4]. After filtering, gain
control, and carrier removal, the input signal was
sampled once per symbol (pulse). The timing of
this sampling clock was adjusted so that the sam-




ples were taken at the “top dead center” of the
received pulses. These samples then entered the
equalizer’s tapped delay line filter. A linear com-
bination of them was fed on to the measurement
and comparison stages. Error measurements made
in the decision circuit were fed back to the equal-
izer’s adaptation algorithm to optimize the choice
of filter weighting coefficients.

While theoretically reasonable (i.e., “one sample
per pulse”) and computationally desirable, practi-
cal design of high speed modems has gravitated
away from T-spaced equalizers and toward the use
of fractionally-spaced equalizers (FSE), so called be-
cause the equalizer taps are closer together in time
than the symbol interval 7. Equivalently, and per-
haps more intuitively, this means that the input to
the equalizer is sampled faster than the symbol rate
fB. The output rate is still at the symbol rate,
making the FSE a decimating or even resampling
filter.

If the temporal spread of the equalizers are held
to the same value, then the FSE obviously consumes
more computation than a T-spaced design. Why
then use them? The answer is that even though
they require more computation, they simplify the
rest of the demodulator’s design and allow it to
work at virtually theoretical levels. The principal
reason for this is that even though the pulses arrive
at rate fp, the actual bandwidth of the signal is
somewhat larger, typically 10 to 40% higher. As a
result, sampling the conditioned input at the rate
of fp Hz is not enough to satisfy the Nyquist the-
orem. While not important if all parameters of the
signal were known, the fact that the input signal
must be processed to extract timing and carrier in-
formation means that sampling at fg is not fast
enough. There are also some curious signal cancel-
lation effects that arise when the signal components
alias into a band of only fg Hertz.

The actual input rate to the FSE is usually gov-
erned by a variety of hardware considerations. The
rate must be high enough to satisfy the sampling
theorem, but lowering the rate reduces the compu-
tational requirements. The most common choice
is to sample the conditioned input signal at ex-
actly twice the symbol rate fg, making the filter
tap spacing equal to %, half of the symbol spacing.
The resulting equalizer thus decimates its input by
a factor of 2, producing one output for every two
input samples. It is not uncommon to operate at a
fractional rate either. The demodulator chip to be
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described shortly uses a QGT- design, in which a dig-
ital timing recovery circuit and resampler supplies
complex-valued samples into the equalizer at a rate
only 20% higher than the symbol rate.

In response to these requirements described in
Sections 3 and 4, the QAM demodulator chip pic-
tured in [9] was developed. The demodulator chip
fits into a settop convertor design of the general type
shown in Figure 9. A conventional TV tuner is used
to extract the selected RF channel and translate
it to the standard 45 MHz IF. This analog signal
is then bandpass sampled and the resulting 8bit
samples are applied to the demodulator chip. The
chip first measures the power of the input and feeds
back a control signal to the amplifier which pre-
ceeds the A/D. This loop constitutes an eutomatic
gain control (AGC). The signal is then quadrature
downconverted to produce a complex-valued sam-
ple stream. The image rejection filtering is per-
formed asynchronously to the input clock in such
a way that the filter output rate is synchronous to
the QAM symbol rate. This “asynchronous resam-
pling” is controlled by a circuit which extracts a
tone at the symbol rate and feeds information back
to the filter. The resulting rate-synchronous sam-
ple stream is applied to a fractionally spaced adap-
tive equalizer. Its output, decimated to exactly one
complex sample per symbol, is applied to the digital
carrier tracking loop, which removes residual carrier
frequency and phase, produces “soft decisions”, and
quantizes the soft decisions to produce 8-bit symbol
outputs. The initial prototype chip consumes about
3 watts and executes the equivalent of 700 million
multiplications per second.

In order to let the viewer select any TV channel
at will, the demodulator must be able to acquire all
of its tracking parameters, including the equalizer,
without aid from the transmitter. To do this the
adaptive equalizer uses the Constant Modulus Algo-
rithm |7, 8] to initially “open the eye” and then au-
tomatically switches over to decision direction once
carrier phase acquisition is complete. Decision feed-
back is not employed owing to the pipelined nature
of the chip’s VLSI design.

6 Additional Uses of the QAM De-
modulator Chip

While developed originally for use in digital ca-
ble settop converters, the demodulator chip will




be useful for at least three other applications as
well. The first and second are for demodulation
of digital TV signals which are broadcast over ra-
dio frequency (RF) channels instead of being sent
through a coaxial or fiber cable medium. High def-
inition television is to be transmitted in the US
over the same 6 MHz-wide VHF and UHF chan-
nels over which analog television is now sent. Al-
though vestigal sideband (VSB) transmission is cur-
rently planned, the ubiquity of QAM will proba-
bly win out. Once it does, the QAM demodula-
tor chip can be used directly. The other broad-
cast medium is Multipoint Microwave Distribution
Systems (MMDS), also called “wireless cable”, in
which analog and digital television signals of the
same structure as used for cable transmission are
sent instead over a broadcast signal in the 2.5 GHz
microwave band. Both of these scenarios have sub-
stantially different propagation characteristics than
cable-transmitted signals usually do, implying that
the adaptive equalization used in the demodulator
must be robust and that the equalizer’s length must
match the delay spreads of 2 to 3 microseconds often
seen in the broadeast environment.

The third application of the demodulator is in
test equipment used for maintaining the cable sys-
tem itself. By using the demodulator chip as a part
of the block diagram shown in Figure 5 it is possible
to build a handheld piece of equipment capable of
noninvasively testing cable signals and characteriz-
ing any problems encountered. Such a piece of test
equipment is shown in Figure 10. It can tune to any
RF channel, measure the signal quality, and test for
the presence of macroreflections and ingress. As an
example, consider Figure 11, which shows not only
the signal constellation and spectrum, but also the
channel model and ingress spectrum for an actual
cable TV signal. The plots indicate that the quality
degradation encountered stems not from a macrore-
flection but in fact from ingress from a local FM
radio station.

7 Conclusion

This paper has described a recently developed
blind QAM demodulator chip designed to be part of
a settop converter for digital cable television. The
design considerations effecting the blind equalizer
component, such as length and update algorithm,
have been stressed. Field operating data and some
data-based channel models for QAM transmission
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across cable are being made available (as described
in [9]) as a stimulant to further research on blind
equalization useful in this application.
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Abstract

Blind channel identification and equalization have
atiracied a great deal of attention recently due to their
potential application in mobile communications and
digital HDTV systems. In this paper, we present a new
algorithm based on channel parameter outer-product
decomposition. This new algorithm can be viewed as
a generalization of a recently proposed linear prediction
algorithm. It produces more accurate channel estimates
and is more robust to over-modeling errors in channel
order estimate.

1 Introduction

In popular data communication systems such as the
digital mobile systems and digital HDTV systems, data
signals are often transmitted through unknown chan-
nels which may introduce severe linear distortion. In
order to improve the system performance, it is im-
portant for the receiver to remove channel distortions
through equalization or sequence estimation. Because
the available channel input training sequence may be
too short or even non-existent for channel identifica-
tion, blind channel identification can play useful roles
in these systems.

Blind channel identification relies solely on the re-
ceived channel output signal and some a priori statis-
tical knowledge of the original channel input signal.

A linear prediction based approach was first pre-
sented by by Slock [5] and was later generalized and
refined by Meriam et 4l [6]. Unlike many of the sub-
space methods that tend to be very unreliable when
the channel order is over-estimated, the linear predic-
tion approach is found to be rather robust. However,

plete outer-product decomposition, channel identifica-
tion can be significantly improved.

2 Problem Formulation

A multi-user QAM data communication system can be
captured by a baseband representation. If the N user
channels are all linear and causal with impulse response
{hu(t), u=1,2,...N }, the received output signal can
be written as

N oo
2)=D" D smubu(t-kT—tu)+w(t), seu € Ay,

u=1k=-00

(2.1)
where T is the symbol baud period and A, is the input
signal set of user u. The noise w(t) is stationary, white,
and independent of channel input sequences 3,u, but
not necessarily Gaussian. Note that hy(t) is the “com-
posite” channel impulse response that includes trans-
mitter and receiver filters as well as the physical chan-
nel response.

It is known that channel identification based on sec-
ond order statistics is possible only for oversampled
channel output. Let the sampling interval be A = T/p
where p is an integer. The oversampled discrete signals
and responses are

z; 2 2(iA), hyfi] 2 hy(iA) and w; 2 w(iA).
(2.2)
Suppose {hy(t)} has finite support [0, T},), which spans
mo + 1 integer periods. By defining the following no-
tations

A

as will become clear in this paper, the linear prediction k] = [z 2ipn Thptp-1 ,
algorithm (LPA) does not fully exploit all the available Z(—1)p T(k—1)p+1 Thp—Mp+1)
second order statistical information of the channel out- a ]
put St = sk, 2 seN I

‘ A

In order to derive a more robust algorithm for chan- slk] = [se s Sk-mo—M+1]'
nels with weak precursor impulse responses, the focus wlk] = [wep Wipta Whp-Mp+1]
of this paper is to derive the estimate based on the full . A . . , ’
outer-product decomposition of the channel parameter hufy = [ hulip]  hulip+1] hulip+p—1] ] !
vector. Our results will show that based on a com- H: = [hyfi hyfd] ... hy[i]],
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we can form a Mp X (mq + M) block Toeplits matrix

Ho H; ... Hp, O ... 0
H= 0 Ho H; ... Hp,
R . .0
0 ... 0 Hy H;y ... Hp

(2.3)

Clearly, mo is the order of the N dynamic FIR chan-
nels. With these notations, the sampled channel out-
put signal vector can be written as

x[k] = Hs[k] + w(k]. (2.4)

Consequently, the channel output covariance matrix
becomes

R, = E{x[k]x[k]¥} = c7HHY + o3I (2.5)

assuming that the channel input signal is white with
gero mean and R, = E{s[k]s[k]¥} = oI while the
noise is spatially white with gzero mean with Ry, =
E{wlklw[k}¥} =03 L

Our objective is to identify the channel H from the
second order statistics of the channel output signal x[k]
given in Ry, under the identifiability condition [1] that
both H and R, are full-rank. The use of second or-
der statistics for blind channel identification was first
exploited by Tong, Xu, and Kailath [1]. The basic
concept hinges on the signal and noise subspace sepa-
ration through singular value decomposition (SVD) of
the auto-covariance matrix Rpm,.

The sub-channel matching (SCM) method presented
in [3] and the subspace method of 2] can both be posed
as a minimum eigen-vector problem under proper chan-
nel length constraints. The special block Toeplits
structure is utilized in both algorithms. When the
channel length is over-estimated, common seros must
be factorized out from the sub-channel estimates. As
a result, both algorithms are very sensitive to channel
length mis-matching.

In [5] and [6], a linear prediction algorithm (LPA)
was presented for channel estimation. It is shown to be
more robust to over-estimated channel length. How-
ever, as we will show later in this paper, the LPA only
uses part of the overall information because the chan-
nel estimate is based on the first p columns of the esti-
mated channel parameter vector outer-product matrix.
As a more robust and accurate channel estimation algo-
rithm, the outer-product decomposition algorithm we
propose will exploit second order statistics more effec-
tively.

3 Algorithm Development

We will form an outer-product of the channel parame-
ter matrix

h2[H, H, ... H, ] (3.1)
Let
. Bapap-a] = ZH;-:L;-
=0
(3.2)

X[k] 2 [zap Zrpr
For notational convenience, define
. mo
R(n) £ E{X[k]X[k - n)¥} =03 Y _H;H{,. (3.3)

i=n

The channel output covariance covariance matrix can
be written as

R, 2 E{x[k]x¥[k]} = o?HHY + 031.  (34)
Denote
H, H; --- Hp, 0--- 0
H,= .Hl .Hz ? o 0 (3.5)
H, 0 -0 0.0
If we define p x p block matrices as
mo
Di;2 Y HWH{Y, ., 1<ij<mo+l, (36)

k=i—-1

it can be verified that

Dy, Dy,z Dy,mo+1
D31 Dy,3 D;,

HHY = | . et
Dmo+1,1 Dmo+1,2 Dmo+1,mo+1

(3.7
This matrix is an (mo + 1)p X (mo + 1)p Hermitian
matrix. Now define a new matrix as

D33 <o+ Damo+1 0

D33 «++ Damot1 0
Dmot1= | : ] (38)

D‘Ino+1,2 Dm°+l,mo+1 0

0 e 0 0

We can form another Hermitian matrix from

Amgs1 2 H.HY — Dpyyi=hh¥.  (39)




Clearly, matrix A,,,+1 forms the outer-product of the
channel parameter matrix h. Its singular value decom-
position will generate h@, in which Q is an N x N uni-
tary matrix. This ambiguity is intrinsic to the multi-
user blind identification problem and cannot be re-
solved unless additional information is available. If a
multi-channel equalizer is built according to the esti-
mate hQ, the N receiver outputs will be memoryless
combinations of the N channel inputs and will need to
be separated.

In order to estimate the A,, 41 matrix, first con-
struct

R(0)-02I R(1) R(mo)
R(1 R(2 0
R. = .() .() =o?H,HY,
R(my) 0 0
(3.10)
In addition, it can also be easily shown that
Ry, — 021 =0?HH", (3.11)

In order to estimate the product H,H¥, it is important
to note that when H has full column rank, HH¥ is
invertible and H# (HH¥)~'H = I. Then

R(Rm, —o3I)"'R¥ = o?H,HF (3.12)
where o2 is known.

If there is only a single user, the channel impulse
response vector can be estimated from the rank one
outer-product matrix, through eigen-decomposition,
QR decomposition, or simply post-multiplying a ran-
dom column vector. We thus name the method “outer-
product decomposition algorithm” (OPDA).

Notice that OPDA requires two singular value (or
eigenvalue) decompositions in its implementation. Its
complexity is therefore similar to the linear predic-
tion algorithm (LPA) presented by Meriam et al. [6],
the TXK method [1], and the sub-channel matching
method [3]. However, LPA estimates the channel only
from the first p columns of the outer-product matrix. If
the channel impulse response has weak precursor sam-
ples, then LPA is likely to be highly inaccurate since
noise and numerical error will likely dominate the first
few columns of AD,,,+1. Therefore, OPDA is expected
to provide more robust performance than LPA.

4 Simulation Results

We now present simulation results to illustrate the
channel identification performance of the proposed
OPDA. Our experiments are based on a single user
with a multi-path channel model. We consider a raised-
cosine pulse P(t) limited in 6T with roll-off factor 0.10
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and a two ray multi-path channel
c(t) = 6(t) — 0.78(t — T/3).
The impulse response
h(t) = ¢(t) * h(t) = P(t) — 0.7P(t — T/3)

is shown in Figure 4. The data input signal is i.i.d.
BPSK and the oversampling factor is p = 3. In all our
simulations, M is chosen to be twice as long as P(t).

. ] " ®

In the first set of simulation tests, we compare the
two methods OPDA and LPA based on 100 and 200
bauds of channel output samples. The channel or-
der is unknown and is estimated using the MDL cri-
terion. The normalized mean square error (MSE) of
the channel estimate under different channel SNR lev-
els is shown in Figure 1.

{(a) Datalength = 100T () Data fength = 200T

2 A
& LPA & LPA
3! s 1
go go

-1 -1
E 2 E 2

- - DA
E - OPDA E a or
Z z

-4 -4

1
ath

]
-t
=)

15

0 15 20 25
Channel output SNR (dB)

20
Channel output SNR (dB)

Figure 1: Normalized MSE of channel estimate given
different SNR levels.

For several different data lengths, the resulting nor-
malized MSE is shown in Figure 2. Once again, the
results show that OPDA and LPA are equally ineffec-
tive when SNR is low. But when the SNR is higher,
OPDA out-performs LPA significantly.

We also tested the comparative robustness of the two
algorithms when channel mismatching is present. Fix-
ing SNR=20dB, we manually varied the channel length
estimate from 2T to 107. Notice that the true channel
length is 6. The results clearly show that while LPA
is less sensitive to errors in channel order estimate, its
performance is generally much worse compared with
that of OPDA. When the channel order estimate de-
viates modestly from the true channel order, OPDA
generates a much smaller normalized MSE.
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Figure 2: Normalized MSE of channel estimate given
different data lengths.
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Figure 3: Normalized MSE of channel estimate given
channel length mismatch.

Finally, we compare a group of typical impulse re-
sponses estimated from 50 independent trials of the
OPDA and LPA under 20dB SNR and data length of
L = 400T. Assuming the channel length is correctly
estimated, The estimated impulse responses are shown
in Figure 4.

5 Conclusions

We present a new robust and accurate blind channel
identification algorithm OPDA based on outer-product
decomposition. This new algorithm can be viewed as
a generalized method of the recently proposed linear
prediction algorithm (LPA). The new OPDA is capable
of generating much more superior identification results.
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Decoupled Blind Symbol Estimation Using an Antenna Array
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Abstract

The problem of separating superimposed digi-
tally modulated signals using an array of antennas
ts considered. The proposed method ezploits the
finite alphabet structure to demodulate one sig-
nal at the time, resulting in a computationally
efficient solution. The resulting signal estimates
are shown to be ezxact in the noise-free case. In
noisy scenarios, the performance is comparable
with that of the recently proposed iterative least
squares approach, which demodulates all signals
simultaneously at a higher computational cost.

1 Introduction

Array processing techniques can be used to dis-
criminate between spatially separated co-channel
signals, and can consequently increase the capac-
ity in wireless communication systems. This pa-
per discusses how to reliably demodulate one or
more desired signals of interest (SOI) from the
output of an array, in the presence of other co-
channel signals and noise. Traditional approaches
exploit the spatial structure of the array, and
as such depend on high-resolution estimates of
the DOA’s (Direction Of Arrival) of the incom-
ing signals. Since modern wireless communica-
tion systems are characterized by a highly vari-
able propagation environment, this spatial struc-
ture is poorly defined [3]. On the other hand,
these methods make no assumptions about the
signals themselves, and are thus not exploiting
the structural information present in the signals.
Various blind copy algorithms have been proposed
to alleviate this problem [1],{10]. The referenced
techniques require synchronized signals and must

*e-mail:ranheim@ae.chalmers.se, phone: +446-31-772
1813, fax: +46-31-772 1782

te-mail:pelin@ae.chalmers. se
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assume flat frequency fading. Generalizations are
considered in (2, 6, 9] and [10]. This paper pro-
poses a new approach, based on decoupling the
estimation problem (i.e.treating one signal at a
time). This leads to an algorithm with similar
or better performance for a typical scenario, and
furthermore reduces the computational cost in-
volved in the estimation procedure significantly.
These claims are supported by simulation results
and a complexity count. Consistency and unique-
ness issues are also addressed.

2 Signal Model

With d syncronized signals arriving at an m el-
ement antenna array, the complex output vector
after matched filtering and symbol-rate sampling,
can be expressed by the following familiar equa-

tion
x(n) = As(n) + v(n) (1)

where A is the collection of total array response
vectors (spatial signatures), scaled by the signal
amplitudes

A= [plal .. .pdad]. (2)

s(n) = [bi(n)...ba(n)]T, bi(n) = £1 (BPSK),
and v(n) is spatially and temporally white noise.
For simplicity we consider BPSK signals, but ex-
tensions to arbitrary linear modulation formats is
straightforward. A block formulation is obtained
by taking N snapshots, yielding

X(N) = AS(N) + V(N)

whre X(N) [x(1)...x(N)], S(N)
[s(1)...s(N)], and V(N) = [v(1)...v(N)]. The
spatial structure of the data is represented by A,
while the matrix S represents the temporal stru-
cure.

By defining one signal (at a time) to be the
signal of interest (SOI), (3) can be rewritten in

3)




the following way
d
a;s; + Z a;s; + V(N)
=2
as; + J(N) (4)

where the first signal is taken to be the SOI, with-
out loss of generality. The term J(N) thus corre-
sponds to interfering signals plus noise.

X(N)

3 Decoupled Symbol Estimation:
Algorithm

Since it is desired to estimate the signals with
little or no spatial knowledge, the idea is to itera-
tively estimate a and s, based on the formulation
in (4).

3.1 Algorithm

Given an initial estimate of A A
[4; ...44), the following weighted least-squares
criterion function is minimized

mi;l(X—as)‘W(X—as) = misn ||W'% (X —as)||?

(5)
Here, W should ideally be chosen as R;l (5],
which can be interpreted as a prewhitening of the
data vector x(n). However, it can easily be shown
using the matrix inversion lemma, that using the
inverse of the sample estimate of the covariance
of the array output produces asymptotically (for
large N) equivalent signal estimates. Equation
(5) can thus be reformulated as follows

(6)

min||Z — bs|?
b,s

with Z = R23X, b = RI%a, and R,
4 XX* The solution to (6) w.r.t. s is

= (b'B) 162 = ——bZ (1)
bl
Exploiting the finite-alphabet property, this
solution is projected onto its closest discrete val-
ues in the signal space (£1 ). The (modified)
steering vector b is then updated by minimizing
(6) w.r.t. b. The solution is

_Zs

= ®)

Note that (8) is simply a temporally matched
filter to the current signal estimate, whereas (7)
represents a spatially mathed filter. The process
is repeated until s converges, after which the al-
gorithm continues with the next signal.

b= 78" (88")"!

mﬂin“Z(I—P,;‘)H2 & m:xx[lZPs-
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32 Consistency and Uniqueness

A relevant question is whether or not the al-
gorithm is able to “capture” the transmitted sig-
nals. Since the iterative scheme corresponds to
a relaxed optimization procedure, it is a simple
matter to show that it is guaranteed to converge
to a local minimum. Whether or not this corre-
sponds to a “true” minimum depends in general
on the initial estimate. However, even if it does,
it is a non-trivial question if the global minimum
yields a consistent estimate of the transmitted
waveform. Clearly, this is possible only for high
enough signal-to-noise ratio (SNR), so we will an-
alyze the quality of the global minimum assuming
that the noise variance tends to zero.

Substituting the solution for b in (8) into (6),
gives the following minimization problem

§*s .,

: 1 *_[12 — M !
min || — 5 2s'sll” = min|Z2 - 227 (9)

Reformulating in terms of projection matrices

t”?

lo max 1|Zs

(10)
where the last equality follows since for BPSK
signals P, = s*(ss*)™'s = s"s/N. Furthermore,
by using Z = R~ %X, the following can easily be
derived

(11)

max||Zs*||? = max {sPx.s"}

8 8

Using Schwartz inequality,
1= n

sPx.s” < [Is|]*|IPx. (12)

with equality when R(s*) C R(Px-), Le. s] =
X*t' for some column vector t’. In the noise-free
case we have X,y = ASo, giving

s} = (ASp)"t' =S¢t . (13)
Thus, the signal estimate converges to a linear
combination of the d transmitted signals. Under
suitable “persistence of excitation” conditions, t
must contain a £1 in one position and zeros oth-
erwise, implying that s; is one of the true trans-
mitted signals with a possible sign change. Specif-
ically, since all signal vectors s ...sq are treated
likewise, we can write for the d signal estimates

(14)

In [10] it is shown that the above can hold only
if T is a diagonal matrix with &1 entries, or
a permutation matrix, or a product of the two;
provided that the columns of Sy include all the

[s}...s5) = [so1-- .spa]T -




24 possible distinct d-vectors, with £1 elements.
The latter is a mild condition, which is satisfied
in most cases of practical interest. We conclude
that the global minimizer of the decoupled crite-
rion function converges to any of the d transmit-
ted signals as the noise variance tends to zero.

4 Performance and Complexity

4.1 Performance

Figure 1 below shows the results of a simula-
tion comparing the performance of the proposed
algorithm with that of ILSP [8]. A total of d = 3
signals are impinging on a 4-element uniform lin-
ear array (ULA), and the BER vs. SNR is evalu-
ated. A 5 bit training sequence was used to get an
initial estimate of the steering vectors A. The re-
sults clearly show that an improved performance
has been obtained in this scenario. (the BER of
the signal with DOA=106° was ~ 0.25 for both
algorithms, regardless of SNR).

Figure 1. Performance of decoupled WLS
approach and ILSP algorithm. Simulated
data. '

The algorithm was also tested on a real dataset
collected at the University of Texas at Austin,
and compared to ILSP. Two closely spaced sig-
nal transmitted bursts of 198 symbols/burst (still
BPSK), and 4 antenna elements was used at the
receiver. Different noise realizations were then
generated and added to the data in order to eva-
lute the BER vs. SNR performance (for the
strongest signal only). The results are given in
figure (2), and demonstrates that the two algo-
rithms performs similarly in this scenario.
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Figure 2. Performance of decoupled WLS
approach and ILSP algorithm. Real data.

In general, one can say that the decoupled al-
gorithm outperforms ILSP for large burst lengths
and a small array. The explanation for this is

that the approximation R;_l x R;l, used in
section 3.1 improves with larger N and smaller
m. On the other hand, in scenarios with m 3> d
and N relatively small; it is our experience that
ILSP gives a slight improvement compared to our
proposed method.

number of ilratons

Figure 3. Complezity of decoupled WLS ap-
proach and ILSP algorithm

4.2 Complexity

Since the proposed algorithm is based on the
same iterative approach as ILSP, it is interest-
ing to compare the complexity of the two meth-
ods. Before the iterative estimation of s and b
begin, Rz ? and the product Rz ? X must be com-
puted. This requres O(m?) + m%N flops. Note




that this computation is only carried out once
for a given block of data X(m|N). Looking at
eqn.(7), it is sufficient to compute the product of
the b*(1|m)-vector with the modified data-matrix
Z(m|N), requiring 2mN flops [4]. Similarly, to
update the b estimate, the same kind of product
is computed. This gives a total of 4mN flops per
iteration and signal. A similar count for ILSP re-
sults in 2Nmd + 2d2(N — $) + md? flops to solve
for A and 2Nmd+2d?(m— %)+Nd2 flops to solve
for § (both per iteration). Consequently, the pro-
posed algorithm results in a significant reduction
in computational complexity as compared to the
ILSP algorithm.

In order to get a fair comparison of complexity,
one should also look at the convergence properties
of the two algorithms. The number of iterations
required for convergence is compared in figure 3
(same scenario as in 4.1). Even if the total num-
ber of iterations for the proposed algorithm (add
the three solid lines) exceed that of ILSP in this
case, it does not offset the large difference in com-
plexity in terms of flops count.

As an illustration, the following typical num-
bers were obtained using a flops count in MAT-
LAB for the scenario above at SN R = 5dB: ILSP
requires (w. ~ 10.4 iterations on the average, see
figure 3)

(10.4iter) (32650 flops/iter) ~ 339000 flops.
The decoupled algorithm requires a total of
(6552 flops/iter)(6.2+6.5+4.2iter) =~ 110700 flops

in addition to the inversion of R. (only once!).

5 Conclusion

The simulation results indicate that the pro-
posed algorithm has similar or improved per-
formance compared to ILSP, and that this im-
provement is accompanied by a significant reduc-
tion in computational complexity. This is par-
ticularly notable if not all signals are of inter-
est. The method can be extended in a straight-
forward manner in order to include the case of
non-synchronized users and time-dispersive chan-
nels, using e.g. conventional synchronization
and equalization techniques [7]. Simulations per-
formed by the authors (not included here due to
space limitations), have confirmed this claim.!
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Abstract

The objective of this paper is to introduce a statis-
tical and physically based mechanism giving rise to a-
stable noise models. We show that the additive inter-
ference which is present in many environments can be
modeled as symmetric a-stable by assuming: (i) inde-
pendent signaling (effects) from a large number of in-
terferers of the same type (modulation); (i) Poisson
distribution of interferers in space; and (i) inverse
power attenuation of signal strength with distance. Our
approach to a-stable noise modeling is based on the
LePage series representation [5] as opposed to the influ-
ence function approaches taken in [1],[8]. The formulas
derived are used to predict noise statistics in environ-
ments with lognormal shadowing and Rayleigh fading.
The LePage series framework allows us to investigate
practical constraints in the system model adopted, such
as the finite number of interferers and nonhomogeneous
Poisson fields of interferers.

1 Introduction

The characterization of the corrupting noise distri-
bution is an important requirement for most system
design problems because it leads to the development
of noise suppression methods. The most widely used
noise model is the Gaussian random process. How-
ever, in some natural environments, the Gaussian noise
model may not be appropriate. This is evident from
a higher probability of large amplitude values than is
consistent with Gaussian distributions. A number of
models have been proposed for such impulsive phe-
nomena, either by fitting experimental data or based

*This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).
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on physical grounds. Recently, it has been suggested
that among all the heavy-tailed distributions, the fam-
ily of stable distributions provides the most accurate
model for impulsive noise [1],[8]. In communications,
stable noise models have been verified experimentally
in various underwater communications and radar ap-
plications [1], [9]. Stable distributions share defining
characteristics with Gaussian distributions, such as the
stability property and the generalized central limit the-
orem (GCLT), and, in fact, include Gaussian distribu-
tions as a limiting case. Because stable distributions,
except for the Gaussian case, have infinite variance,
at first sight, it appears that stable noise models do
not have the wide applicability enjoyed by second-order
processes. However, in this paper we present a realistic
physical mechanism giving rise to stable noise. We do
this by considering the nature of noise sources, their
distributions in time and space, and propagation con-
ditions.

2 System Model

In our system model, a detector is located at the cen-
ter of a plane where there is a large number (N — o)
of transmitters using the same power and modulation.
The distances between the detector and interfering ter-
minals are denoted as r;, where r; < ry <,---,< rn.
In general, after the correlation detection of passband
interference, the interfering signal is represented as an
n-dimensional vector given by

N
Y = Iéiinoo;a(ri)xi, (1)

where a(r) represents the signal attenuation over dis-
tance r, and X; = [X;1,...,X; ] is a random vector
with n coordinates X;;,j = 1,...,n which are real




random variables (RVs). The jth coordinate of X; is
the correlation of x;(t) with the function ¢;(t) *. In this
paper, we are concerned with characterizing the distri-
bution of Y, and in order to do this, we assume that
X; are spherically symmetric? (SS) RVs. Because all
interfering terminals use the same modulation scheme
and transmit at the same power, it is reasonable to as-
sume that the random vectors X; are i.i.d. Moreover,
the distribution of X; is independent of r;. To explain
the noise modeling in (1), it is useful to consider a sys-
tem with on-off frequency shift keying (FSK) and non-
coherent detection. In this system, ¢ (t) = cos(27 fot)
and ¢ (t) = sin(27 fot), and the projection of 2;(t) onto
{p1(t), p2(t)} results in X; = [cos(O;),sin(0;)], where
©; is uniformly distributed in (0,27]. This means that
X; is circularly symmetric (CS), a bivariate case of a SS
vector. With respect to the terminal positions, we as-
sume that terminals form a Poisson point process with
the expected number of terminals per unit area/volume
given by X [6].

3 Stable Interference Models in Envi-
ronments with Deterministic Propa-
gation Laws

We assume initially that the signal amplitude loss
function over distance r is given by the following de-
terministic propagation law

(2)

where the constant K depends on the transmitted
power. The attenuation factor m can vary from slightly
more than 1 for hallways within buildings to larger than
3 for dense urban environments and office buildings.
Combining (1) and (2), the noise equation is

o0
Y = ;%x,

In the Appendix A, we sketch the proof of the following:

Theorem 1 If the RVs X; are i.i.d. and SS and
the interferers/scatterers form a Poisson field, then
the characteristic function of the interference vector Y
in (3) is SS a-stable, i.e.,

v (t) = exp(—II¢]|*), (4)

1The projection of a continuous-time waveform transmitted
by the i-th terminal z;(t) onto ¢;(t), or equivalently the corre-
lation of these two, is given as X; ; £ foT @;j (t)z; (t)dt, where T
is a symbol interval.

2The random vector X is said to be SS if its characteristic
function ®x (t) depends only on the Euclidean (Lz) norm of t,

ire., Bx () = B(l1tl]) , where |[t]| = (7, )3

a(r) = 17,;’

)
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where o = % and o = % for interferers distributed in
the plane and volume, respectively. The parameter v,
called dispersion, is given as

i 6]

= —XPK® /0 o0 g, (5)
or equivalently as
v=XPK°C;'E | X ; |%, (6)

where ®(x) = ®x(||t|]) is a generating characteristic
function of the SS RVs X; 3 ;' denotes differentiation,
and Cy = Tz—’a)lc—Tz(wm The constant P = = for
interferers in the plane, and P = %w for scatterers in
the volume.

For X; = [cos(©;),sin(0;)] (non-coherent on-off FSK),
with ©; uniformly distributed in (0,2n], we have
&o(z) = Jo(z), where J, () is a vth order Bessel func-
tion of the first kind [4]. This model for X; is assumed
in many radar applications. Because Jy(z) = —J1(z),
the formula 6.561.17 from [2] can be used in (5), to cal-
culate that the dispersion of the SS stable RV Y in (3)
with the deterministic power propagation law as in (2)
is given for 0.5 < @ < 2 by

r'l-ea/2) .
20T(1 + a/2) ™
In this equation, the admissible range of the path loss
exponent is 1 < m < 4 for interferers distributed in the
plane, and & < m < 6 for scatterers distributed in the
volume. :

Ydeterm = APK®*

4 Stable Interference Models in Log-
normal Shadowing and Rayleigh Fad-
ing Environments

So far we have assumed that the received signal
strength decreases with range raised to some exponent.
However, experimental results show that this is only
the average behavior of the signal. The received signal
at fixed range is not constant because of different ter-
rain characteristics and statistical fluctuations in prop-
agation conditions. Typically, the following random
effects should be included in a study: (i) the random
link attenuation due resulting from lognormal shadow-
ing and (ii) Rayleigh fading.

In the presence of lognormal shadowing, the pdf of
the signal strength is of the form 3]

R 1 . 5a(r)
p(a(r)la(r)) = — exp[— - In*(==<)];
V2woa(r) 20° a(r)  (8)
3Here, ®o(x) is a function of the scalar variable x = [t

which for a SS RV X; does not depend on n.




where a(r) X is the median of a(r) as given in (2)
and o = 0.50,. The parameter o, is the standard de-
viation of the instantaneous power, and it depends on
the environment. Values of o, on the order of 8 to 10
dB are reported in the literature [3]. So in order to
include the lognormal shadowing effect in our model,
we have to consider a(r) in (1) to be a RV given as
a(r) = X exp (¢G), where G is the standard Gaussian
RV with zero mean (G ~ N(0,1)). The interfering

signal is then

Y=K Z — exp(0G;)X. 9)

= 1

We assume here that G; are ii.d. The hypothesis of
independence between shadowing effects from different
users is generally accepted [4]. Therefore, we can apply
Theorem 1 in (9) with X; replaced by exp(cG; )X; 4.

Then, in environments w1th lognormal shadowing, Y
is again a-stable with & = E and a = 3 for interferers
distributed in the plane and volume, respectlvely To
calculate the dispersion, we use (6)

AK*PCI'E | exp(aG;) X |*
)\KO‘PC 'E I X'LJ |* E | exp(0G) | (10)
Ydeterm exP(za o )

"Y:

where Ydeterm is a dispersion of the corresponding sys-
tem with the deterministic power propagation law. The
last equation in (10) follows from the first moment re-
lation for lognormal RVs.

If a(r) is Rayleigh distributed, for a given r, a(r) can

be represented [3] as a(r) = \/; R, where the RV

R=,/G?+ Gé is Rayleigh distributed with G;,Gg ~ -

N(0,1). Then, we have to substitute \/gmxi for X;
in Theorem 1, and Y is a-stable with the same char-
acteristic exponent as in the deterministic power prop-
agation scenario. The dispersion is calculated in the
same fashion as in (10). Because E|R|* = 23T(1+2),
the dispersion is

YT = 'Ydeterm(%)%r(l + %) (11)

The dispersion factors ,y—d—:’— for lognormal shadowing,
Rayleigh fading and combined shadowing and fading
are shown in Fig. 1 as a function of a. The curves are
plotted with the shadowing standard deviation o, =
10 dB. We see that in all cases examined, the dispersion
factors are increasing functions of a.

4The RVs exp(¢G;)X; are spherically symmetric (SS) be-
cause a product of a univariate RV and a SS RV is SS. Also,
they are independent because {G;} and {X;} are assumed to be
independent sequences of mutually independent RVs.

T
. l
12 Jdetcrm
8 |- Lognormal shadowing _
Combined shadowing
4 - and Rayleigh fading _
__—Rayleigh fading

0 i 1

0.5 1 1.5 2

Figure 1. Dispersion factor for Rayleigh fading and
lognormal shadowing (o5 = 10 dB).

5 Practical Considerations

In Section 2, we have made two idealized assump-
tions: (i) we assumed an infinite number of interfer-
ers; and (ii) we assumed that an interfering signal was
present for the entire duration of the matched-filtering
interval. In [3], we show that these assumptions do not
constrain our analysis. Moreover, we demonstrate that
the a-stable model applies when interferers form non-
homogeneous Poisson fields. The last result is achieved

. by mapping the processes in the plane (volume) into

homogeneous processes on the line. This is because
the LePage series representation applies only to Pois-
son processes with a constant rate. For example, if the
non-homogeneous point processes in the plane has the
rate function A(r) = Aor?~2 and B < 2m, then rf rep-
resents the homogeneous Poisson process with the rate

A= /\0 . With this result, we can proceed as in Sec-
tion 2 and arrive at the stable model with o = ﬁ and
v = ——/\ozﬁ”K"‘f —gﬁldx Also, if we assume that

the interferers are Poisson distributed only in a sector
of the plane with an angle ¢, and that their density is
A, then we can map such a process to a homogeneous
Poisson point process in the whole plane with the rate

bs
A = /\10#{2 = )\gﬁ. The latter scenario is applicable
to directional antennas as opposed to omnidirectional
discussed so far.

6 Concluding Remarks

In this paper, we have characterized interference for
multiple access communication systems in which in-
terferers are assumed to be Poisson-distributed in the
plane. The same development applies to radar clutter.
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Assuming the average inverse power attenuation of sig-
nal strength over distance, interference in the system is
shown to be an SS a-stable noise. This model specifies
system noise with two parameters: the characteristic
exponent o and the dispersion v. The formulas de-
rived in the paper allow us to predict noise statistics in
environments with lognormal shadowing and Rayleigh
fading.

The hypothesis of a-stable noise is partially confirmed
by the impulsive character of clutter and multiple ac-
cess interference. But in the end, it must be resolved
against experimental data. Alpha-stable noise model
verification in radar applications is currently underway
and the results will be announced shortly.

Appendix A

Our proof of Theorem 1 is based on the generalized

LePage series representation of SS o-stable distribu-
tions:
Theorem 2 Let {7;} denote the “arrival times” of a
Poisson process® with rate A and let {X;} be SS i.i.d.
vectors in R" satisfying E|X;|* < oo, or equivalently
ElX,"jla < oo. Then

o0
Y = ZT_%X;,;
i=1

converges a.s. to a SS a-stable random vector Y with
the characteristic function (ch.f.)

(12)

¢y (t) = exp(—7l[t][*). (13)
The dispersion parameter <y is given as
foe) 1
y==-A / <—I)-ﬁ)—dzzz. (14)
o

The detailed proof of Theorem 2 can be found in [3].
To link the multivariate version of the LePage series
in Theorem 2 with the noise equation in (3), we need
to map a Poisson point process in the plane (volume)
onto the homogeneous Poisson process on the line. To
achieve this, we use the following proposition which re-
sults from the mapping theorem of Poisson point pro-
cesses [6]:

Proposition 1 For a homogeneous Poisson point pro-
cess in the plane (volume) with the rate X, assuming
that points are at distances r; (11 < r2 < ---) from
the origin, T; = r? (T'; = r}) represents Poisson ar-
rival times on the line with the constant arrival rate

A (370).

-5In this paper, we use the term arrival times or occurrence
times of a Poisson process to mean a Poisson process on the line,
where time is just a hypothetical variable.
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Now, for interferers distributed in the plane, we rewrite
Y in (3) as

= 1
Y = KX; (_r?)_%'x"‘ (15)

From Proposition 1, T'; = r? represents Poisson “oc-
currence” times on the line with the arrival rate 7,
and based on Theorem 2 8, Y is SS a-stable with

the characteristic exponent a = % and dispersion
v = -ArK® [° 2’{;@dm. The multiplicative constant

K changes the dispersion of a-stable RV by K* [7].
Similar proof follows for interferers distributed in th
volume. The equivalence of Egs. (5) and (6) follows
from the integral formula ([2], 3.823)

/oo 1-— Cos(zt)dt |z I'(1 - o) cos(Fa)
0 totl a

(16)

by replacing the constant z with RV X;; and taking
expectation of both sides.
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Abstract

We study the Fractionally-Spaced Equalization by
CMA (FSE-CMA) robustness to channel noise and lack
of disparity. When there is lack of disparity, we will
show that, whereas other recent technics as linear pre-
diction or subspace like methods fail FSE-CMA can
still equalize. In particular for long enough equalizer
FSE-CMA ezhibits a “smoothing effect” which leads to
an interesting trade-off between achieving zero-forcing
equalization and noise enhancement.

1. Introduction

Constant Modulus Algorithm (CMA)[1], is one of
the most commonly used blind algorithm to suppress
InterSymbol Interference (ISI) in digital transmission
systems. It is called FSE-CMA (Fractionally-Spaced
Equalization by CMA) when used in a channel di-
versity scheme generated by either oversampling the
received data or multivariate data observed behind
a sensors array. In a previous work ([2]), it has
been shown that the FSE-CMA criterion minimization
achieves perfect equalization (in the noise-free context)
under the so-called Zero-forcing conditions (no com-
mon zero in the multichannel transfer function, i.e.,
co(z)=1 in Figure 1 and a long enough equalizer)([2],
[3]). Moreover, in the contrary of the second-order
statistics based methods ([4], [3], [5], [6]...), FSE-CMA
still performs reasonable equalization even when there
is lack of channel disparity (i.e., co(z) # 1) (see the
noise-free preliminary study [2], for instance). Further-
more we have shown, in a previous study, that under
ZF conditions FSE-CMA exhibits some robustness to
channel noise ([7]).

In this contribution we are motivated by the desire
to evaluate the FSE-CMA global performance criterion
in realistic noisy conditions. So, we address the effect

0-8186-7576-4/96 $5.00 © 1996 IEEE
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of additive white noise and lack of channel disparity on
the FSE-CMA criterion, in terms of the input-output
remaining mean square error. This will also allow to
define an equalizability bound that will permit to com-
pare the optimal FSE-CMA performance to other re-
cent Fractionally-Spaced Equalization technics.

2. FSE under lack of disparity

Under lack of disparity, we consider the Fractionally-
Spaced model driven by a zero-mean i.i.d. sequence
s(n) and corrupted by an L-dimensional additive noise
W(n) = (@1(n), -+, @L(n))" (Figure 1).

wi(n)

-4

e1(z)

[NE)

>

(n)~3(n—v)

Co(z)

Sp(z)- ~leL(2)

57
4

wr(n)

Figure 1. FSE Scheme Under Lack of Disparity

The linear equalization problem consists on choosing
the ”best” L-variate Finite Impulse Response (FIR)
equalizer transfer function &(z), of degree N, such as
y(n) ~ s(n—v), with v is an arbitrary delay. (each ex(2)
writes as ex(z) = ij___o ex,p 2 7). The channel is de-
scribed by co(z) a possibly non-minimum phase scalar
transfer function of degree Z; and &(z) an L-variate
FIR non-reducible vector transfer function (i.e., there
is no common zero to all components ¢, (z) of degree
(Q=20)).

This problem formulation is turned on choosing the
N long equalizer impulse response &, such as:

y(n)=(ETCCo) S(n) +&E"W(n)mé(n-v) (1)




where S(n) contains the last (N +@Q) input symbols
in the past of s(n) (with N—1> Q) and W(n) is the
multivariate noise vector (@(n),---,@d(n — N +1))".

Hence, Co denotes the (Q—Zo+N) x (N+@Q) channel
convolution matrix associated to co(z) and C denotes
the (NL) x (Q—Zo+N) channel convolution matrix as-
sociated to the multichannel minimum phase transfer
function &(z). Note that, C and Co are respectively full
column-rank and full row-rank Sylvester matrices ([2]).

3. Smoothed FSE-CMA criterion

Lemma 1 The FSE-CMA normalized criterion ([1])
18:

J4(&)=E [(r=y’(n)*] /B[]’ (2)
with vy = E[s*]/E[s?], and E[] stands for the mean
ezpectation operator. Assuming independence between

the noise and source signals and a temporally/spatially
white gaussian noise, we get:

J(&)=Jo(@+7 I€I* {2 (3l €5 CT€ I —p) +371I€1I%} (3)

where Jo(€) is the noise-free cost-function, ~ is the
noise to signal power ratio writes as , v= E[w?]/E[s*]

and p = E[s*]/E[s*)® is the input signal kurtosis.

Proof: Using (1), the proof is deduced by a straightforward
calculus (see [2]). Note that the expression can be easily
eztended for a non gaussian noise since we know the fourth-
order moment of the noise contribution. O

3.1. Further results under lack of disparity

The channel/equalizer impulse response setting ze-
roing the noise-free cost-function Jo(¢) writes as:

h, =CiCTe & &2)Té(z)=2"/co(2) (4)

which is not possible with a FIR equalizers. Because of

lack of disparity, the best achievable h may be far from
any optimal setting h, = (0---010---0)T. More pre-
cisely, the only achievable impulse responses h=C{ ¢
live in the subspace spanned by the columns of Ci.In
particular, the closest to h, achievable h is given by
the orthogonal projection of h, on the range of cd,
h=CJ(CoCJ) 1Coh,, We set Iy = CJ (CoCJ )™ Co.
In fact, for a given achievable h = Cg_ e there exists a
unique ¢ such as ¢ = C& and NL—(N+Q—Z,) pos-
sible settings for € In this case, the cost-function
extrema of Jo(é(e)), satisfy CoA(Coe)Cie = 0, with
A(CJe)=(3|ICq ell*~p)I — (3—p)diag(Coee 'Co) , where
diag(A) stands for the matrix extracted from A with
the same diagonal entries and 0 elsewhere. They can
be classified as ([2]):

e one maximum (¢ = 0),

e global minima (when Cge = h, is achievable with
e#0) or saddle points (A(CJe) Cge =0 and Cqe#h.),
e local minima (CJA(Cge) Coe = 0 and ¢ does not
belong to the previous categories).

Note that, a potential global minimum imply that
the corresponding e is expressed as (Cgcg)‘lcoh,,,
i.e., h = Iph,. Since Co can not be square (it is a
(N + Q — Zo) x (N + Q) matrix), there should exist
no global minima such as h = h,. However, when N
becomes ”large”, Co tends to become square so that
I, becomes close to the identity matrix. Of course, as
in the non-fractional case, undesired settings may exist.
However, the larger N is, the closer the corresponding
channel / equalizer is becoming to some h,,.

3.2. Perturbation in noisy case

From lemma 1, one can see in noisy context, that
Jo(€) is regularized by an additional deterministic fac-
tor ®,(&(e)) driven by 4. This leads to a balance
between the minimization of criterions: Jo and &,.
The result is a “smoothing effect” expressed through
twofolds constraints: (i) a minimization of || CJ C'€|[?
that leads to get an impulse response ||h|| as small as

. possible; (ii) a minimization on ||€]| which tends to for-

bid the equalizer norm to be too high, reducing conse-
quently the noise enhancement +}|é)* (see (1)).

Thus, the minima of J,(¢€) realize a desirable bal-
ance between the noise-free good equalization settings
and the noise enhancement due to the equalizer norm.
To solve the minimization problem, we propose a two-
steps minimization procedure. First, we minimize
Jy(€) over the subspace of vectors € such as ¢ = cTe
for a given ¢. The resulting value of € is a function of
e, denoted €(e). Then, we minimize J,(&(e)) over the
subspace of (N +@Q — Zp)-long vectors e. Invoking equa-
tion (3), the two steps minimization can be expressed
as

min Jx(é(e)) = mgin{Jo (&e) +v min_ {2,((e)}} (5)

e=

’ =

The procedure is simplified because J (62 is a function
of e only, so that the first step consists of the smoothing

cost-function ®.,(¢) minimization only.

The first step minimization of the quadric cost-
function ®,(€(e)) (for a given ¢), under the linear con-

straint e = C' &, can be performed using Lagrange mul-
tiplier technic and leads to the zero-order approxima-
tion (for a SNR large enough):

&e)=C(CTC) e +0(1)
The second step consists of minimizing;:

J4(€(e)) = Jo(&(e)) + 7 €@ BlIREN* — p) +o(7) (6)




where the noise-free cost-function Jo(é(e)) = E[{r2 —
(eTCoS(n))?)?]. Taking the derivative of (6) with re-
spect to e, the extrema of (3) are solution of the equa-
tion:

4CoA(Cie)Coe + 27[3]IC(CC)"el* CCq €
+BIICs ell* ~p)(CTC) ] +o(v) = 0 (7)

Our task is to provide a close-form solution to the

equation (7). Since we don’t know how to explicit the
noise-free minima expression, we consider herein the
perturbation of e=¢, = (COCJ)"ICoh,,, correspond-
ing to h = h,. We know that for a ”large enough”
equalizer length it will be a good approximation in the
noise-free case.

4, Close-form extrema

In order to get some insight in the noisy case, we as-
sume that the approximation error is ”smaller” than
the perturbation due to the noise. This should hold
for "large” values of N and "not too small” values of
7. In the same time, v must be small enough to allow
a first order approximation in terms of . The valid-
ity of this assumption is checked by simulations in the
sequel.

Proposal 1 For a small enough v, we assume the
global channel-equalizer setting e, to be a first order

perturbation of e, = (COCJ)_ICOhV in terms of v as,
e, =¢e, +7g, +o(v) (®)

Then, €, satisfies,

Q

gy v

g, ~ -2 e[ (€70) e, (CotuC3) ™" CoCF ¢
828 cuel) e, ©)

The corresponding channel / equalizer settings can be
viewed as a perturbation of h,,

hy=Ce, = h,,—%coT (Col.CJ)™"Co [3¢] (CTC) e, by
+3 - p)CI(CTO)TCI TR} +0(7)  (10)
where ¥, is a (N+Q)x(N+Q) diagonal matriz with

entry (3—p) when i #v+1 and 2p when i=v+1, and
Cf=CJ(CoC ).

Note that, for a large value of N, the symbol ~ in
(9) stands for the approximation of CJ e, ~ h,. If we
assume in addition that the input is constant modulus,
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p=1and ¥, =21, the global impulse response minima
are of the form:

hy & h, — % [3(r;CE(CTC)'CEh) b,
+CH(ECTC)T'CIT ] + o(7) (11)

This result is similar to the expression of h, when ZF
is exactly achievable (i.e., when (CTC)~? is replaced
by CH(CTC)~1CHT. We notice once again that FSE-
CMA criterion has very specific properties for constant
modulus input signals.

Proof of Proposal 1: Introducing assumption (8) in
the equation (7), the proof consists on evaluating €,,; i.e.,
the first order solution (in terms of v) of the equation (7).
Since C;Jrgu ~ h, for a large enough N, we obtain eas-
ily €, as a solution of the linear system: 2 Co\I/UC(TEU =
~3e](CTC)'e,CoCle, + (3 — p) (€TC) e, + o(1).
Where CoU,Cq is invertible if the input signal is not gaus-
sian (i.e., p#£3).0

Simulations: A 2-dimensional multichannel vector &(z)
is defined by the zeros of each transfer function as c¢1(z) =
(—1.4,-0.4) and cz(2) = (1.1, -0.4). The observation num-
ber is set to N=8. Figure 2 displays the impulse response
taps of hy (obtained by running the algorithm to minimize
the criterion) versus SNR. Note that A, is very close to a
canonical vector for a large enough N and SNR. In Figure
3, we display the analytical impulse response introduced in
Proposal 1. We can see that both curves are very close.
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Figure 2: h versus SNR
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Figure 3: analytical h versus SNR




5. Mean square input/output error

In this subsection we are motivated in evaluating the
mean equalizability performance in terms of normal-
ized input/output mean square error (MSE) defined as

E{(y(n)—s(n—v))*}/E[s’}.

Proposal 2 The MSE is as a sum of residual ISI and
noise enhancement (driven by 7). For a large enough
SNR the FSE-CMA MSE can be approzimated by:

I — To)h |2 +7 b CE(CTO) ™ € Thy +o()  (12)

Zero—Forcing Noise Enhancement

The equalizability bound is expressed as the sum of
an irreducible error due to the pseudo-inversion of co(z)
and a linear error proportional to 4. Note that for a
long enough equalizer, Io=I , then the MSE is mostly
due to noise enhancement.

Proof of Proposal 2: The MSE writes as MSE
= ||k — h|®> + 7 ||€]|°>. Introducing the parametrization
h = CJe and the assumption (8), we get &y = &e,) =
C(CTO)(CoC3) ' Cohs + o(1) = C(CTO) e, + (1),
and hy = C;,rg,y = CJ ¢, +0(1) which yields immediately to
(12) C.

An interesting point is to notice that the first-order
FSE-CMA MSE is the same as the MMSE deduced
by minimization of E[(y(rn)— s(n—v))’)/E[s?], even if
the channel equalizer global impulse response minima
differ between criterions.

Simulations: We use a 2-dimensional multichannel vec-
tor ¢(z) is defined by the zeros of each transfer function as
(~1.4,1.1) and we take co(z) = 2+0.4. The observations
number is set to N =8 (Figure 4) and N =2 (Figure 5).
Both curves show the accuracy between the experimental
and the analytical FSE-CMA MSE (12). In Figure 4, N is
long enough to have to have ||( — ITo)h.||* 0. In Figure 5
the analytical curve (—) is the sum of the experimental irre-
ducible zero-forcing (.—) and the linear Noise-Enhancement
error {——).

—=: MSE -: Analytical MSE

10 40 s0 4]

30
SNR (d8)

Figure 4: FSE-CMA MSE (N=8)

~: MSE versus SNR -.: Inavoidable MSE

30 50 Cd
SNR (4B}

Figure 5: FSE-CMA MSE (N=2)

6. Conclusion

Under the realistic assumptions of lack of channel dis-
parity and additive channel noise, we have established
in this contribution an analytical close-form of the
FSE-CMA global impulse response. Whereas other re-
cent second-order methods fail, we have shown that
FSE-CMA realizes an interesting trade-off between
noise-enhancement and achievable equalizability. In or-
der to evaluate the equalizability performance a close-
form expression of the mean input/output steady-state
square error has been derived. For large SNR value
and large N, FSE-CMA performances are very similar
to the best achievable performances of a blind linear
equalizer.
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ABSTRACT

In this paper, a blind adaptive beamforming algorithm
is presented which improves the performance of CAB
[4]. Noting that the weighting vectors of CAB are not
in general proportional to signal steering vectors in the
case of multiple signals, a singular vector rotation tech-
nique is used to iteratively estimate the steering vec-
tors. Using the estimated steering vectors as the con-
straint matrix in the LCMV algorithm [2], better inter-
ference suppression is achieved. Computer simulations
are conducted to demonstrate that the performance of
the proposed algorithm is superior to that of CAB for
the scenario of multiple co-channel users transmitting
at the same frequency.

1. INTRODUCTION

The use of multiple high gain agile beams from a multi-
ple element array antenna with on-board digital beam-
forming [1] is being considered in the next generation of
mobile satellite communication systems (MSCS). The
main advantages of the system are that it offers a flex-
ible solution for channel allocation and it can actively
suppress co-channel interference. Active interference
suppression can be achieved by using on-board adap-
tation. The Linear Constrained Minimum Variance
(LCMYV) algorithm seems to be the most suitable adap-
tive beamforming method for the multiple agile beam
MSCS [8]. The LCMV method requires the locations
of mobile users in order to steer the high gain beam
towards the desired users and place the null at spe-
cific co-channel interferences. Mobile user localization
can be established by on-board processing using high-
resolution techniques, which, however, can be very com-
putationally intensive and calibration of the array is
necessary. On the other hand, blind adaptive beam-

The authors acknowledge Canadian Space Agency for fund-
ing the digital beamforming project.
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forming methods exploiting the cyclostationarity [3] of
communication signals attract attention because of its
advantages of no requirement for mobile localization
and no need for array calibration.

The cyclic adaptive beamforming (CAB) algorithm
[4] being one of the blind adaptive beamforming meth-
ods has been proposed as a good candidate for spa-
tial re-use of frequency spectrum. However, the per-
formance of CAB deteriorates when multiple desired
signals are present. Here, an improved CAB algorithm
is proposed which can iteratively generate a better es-
timation of the steering vectors of multiple signals than
CAB does. Using the estimated steering vectors as the
constraint matrix in the LCMYV algorithm, better inter-
ference suppression is achieved. Computer simulations
are conducted to demonstrate the performance of the
proposed algorithm.

2. BLIND ADAPTIVE BEAMFORMING
ALGORITHM

The basic idea of CAB is to formulate the cyclic (con-
jugate) correlation of the array output x(n) and its
frequency-shifted version u(n) = #(n + ng)e’2*" (or
u(n) = z*(n + no)e??"*") at a particular cyclic fre-
quency a of the desired signals so that the interference
and noise which do not exhibit the same cyclic fre-
quency can be eliminated. It has been proved [4] that
the weighting vectors of CAB corresponding to indi-
vidual desired signals are the left singular vectors of
the cyclic (conjugate) correlation matrix of the array
output R, i.e.,

R%, = WcapA, V! (1)

where W 4p is the left singular vector matrix (each
column of W 4p denotes the weighting vector of each
desired signal), A, is the singular value matrix and V'
is the right singular vector matrix.

R R R R NS




CAB can asymptotically achieve optimal SINR when
there is a single desired signal and the weighting vector
we ap is proportional to the steering vector of the de-
sired signal. However, the performance of CAB deteri-
orates when there are multiple signals, each having the
same cyclic frequency. This is not surprising because
in general the left singular vectors are not proportional
to the individual signal steering vectors unless the mul-
tiple signals are well-separated in the sense that signals
have spatial separations of more than one beamwidth
and/or are of very uneven power. Therefore, CAB in-
tends to work in the scenario of single desired user,
i.e., co-channel users all have different cyclic frequen-
cies. This results in extra bandwidth consumption.

In this section, an improved CAB algorithm is pro-
posed which exploits the fact that the left singular vec-
tors of RZ, and the signal steering vectors span the
same subspace (signal subspace) so that a singular vec-
tor rotation technique is used to iteratively estimate
the steering vectors assuming that the signals are sta-
tistically independent of each other. The steering vec-
tor model includes both the individual elemental errors
and the spatial properties of the signal, thus the pro-
cedure is valid for uncalibrated array. The improved
CAB algorithm allows multiple desired users, or co-
channel users operating at same frequency to achieve
bandwidth saving.

It is well known that the matrix R, can also be
rewritten as its steering vector decomposition, i.e.,

RS, = DR*D! 2)

where D is the matrix of signal steering vectors, Ry is
the cyclic (conjugate) correlation matrix of the signals.
Therefore, we can see that

Column space of W ¢ 4p = Column space of D 3)

It has been proved [5] that there exists a unitary matrix
Q such that

i
DR} =WcapAiQ (4)

Since D, R® and Q are unknown, then Eq.(4) does not
have a unique solution, however, & priori information
about the structure of a steering vector can be used to
iteratively find the matrices D, R and Q that satisfy
the above equality.

The detailed procedure of iteratively solving Eq.(4)
can be found in [6,7].

3. OPTIMAL-CONSTRAINED LMS
WEIGHTING VECTORS

Once D, i.e., the steering vectors of co-channel users
are resolved, the LCMV beamforming algorithm can
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be used to suppress interference. The principle of the
LCMYV beamforming is to constrain the beamformer so
that signals from the directions of interested are passed
with specified gain and phase. The weighting vector
wy, is chosen to minimize the output variance (power)
subject to the response constraints, i.e.,

(5)
(6)

where R, = E{z(n)z!(n)} is the correlation matrix of
the antenna array output and g is the response vector
of the form such as

g=[0---010---0 )

where “1” in g occurs at the kth position for the re-
sponse to the kth desired user and “0” are the response
to the interferences, and T denotes transpose.

The optimal weighting is given as, by solving the
minimization in Egs.(5) and (6),

w, ot = R;'D[D'R;' D] g

: t
min w.R,w
W k k

st. Dlwy=g

®

Since the correlation matrix R, is unknown a priori,
it has to be learned by an adaptive technique. In con-
strained gradient-descent optimization, the weighting
vector is initialized at a vector satisfying the constraint
in Eq.(6), and at each iteration the weighting vector is
moved in the negative direction of the constrained gra-
dient. Thus, the adaptation can be done as

o™ = I-DO'DY' DY (9
—pfl,,(n)wg‘)] + wgo)
»” = DD'D)g (10)

where p is a scalar to control the step size of the adap-
tive process and is usually chosen as

0< p<€1/Amazr (11)

with Amas being the maximum eigenvalue of the cor-
relation matrix R;. Rz(n) in Eq.(9) denotes an esti-
mation for R, at the nth iteration. An available and
simple approximation for R, at the nth iteration is the
outer-product of array output z(n)z'(n). Substitution
of this estimation into Eq.(9) gives

w™Y = (I- D(D'D) DY) (12)
—ua(n)a! (n)wf”] + i
v’ = D(D'D)'g (13)
An alternative estimation of R,(n) is given by
R 1 &
R:(n+ N)= 2 1a:(n+z'):1=7(n+i) (14)




Substituting Eq.(14) into Eq.(9) yields an adaptation
of weighting vectors using block data (block length is
N), ie.,

w("t) (I - D(D'D)~1Dt)[w{™ (15)
N
M . . n 0
v ;:v(n + i)zt (n+ z)w§c N+ 'wi )
»{” = D[D'D) g (16)

In this way, computational load can be reduced and
possibly better performance can be achieved [9].

We notice that the estimated signal steering vectors
provide an initial weighting. The detailed derivation
and the convergence of the adaptive procedure can be
referred to [2].

4. COMPUTER SIMULATIONS

The performance of the improved CAB algorithm is
demonstrated by two computer simulations using a 7-
element uniform linear arary with half-wavelength spac-
ing. Simulated data are generated incorporating array
calibration errors where calibration phase error are uni-
formly distributed over /8 and gain error are uni-
formly distributed over [0.8, 1.2]. White Gaussian noise
at each array element is added.

In the first example, three co-channel users of BPSK
signals with identical normalized data rate 0.5, normal-
ized frequency offset 0.2 and roll-off factor 0.5 incident
upon the array from DOA of 15°, 0° and —30° with
respect to (w.r.t.) the normal of the array. The rel-
ative power are 0 dB, 0 dB and 10 dB respectively.
Low SNR = -7 dB is chosen to illustrate the perfor-
mance in the presence of weak desired signals. Fig.1(a)
shows the beam pattern resulting from Eq.(8) using
the steering vectors estimated by Eq.(4) with the sig-
nal from 15° being considered as the desired signal.
We observe that two deep nulls are placed at ~30° and
0° to suppress the interferences, and 0 dB gain at 15°
(the response of desired signal is chosen as 1). For com-
parison, the beam pattern resulting from Eq.(8) using
the weighting vectors of CAB, W 4p, is plotted in
Fig.1(b), it is apparent that the suppression of the sig-
nal from —30°, which is far apart from the other two
signals, is adequate resulting a deep null at —30° while
the other two weighting vectors do not correspond to
the steering vectors of the signal from 15° and 0°, and
result no null at 0°.
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Fig.1(a) Beam pattern w.r.t. the signal
from 15° using the estimated steering vectors
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Fig.1(b) Beam pattern w.r.t. the signal
from 15° using W ap

In the second example, three co-channel users of
BPSK signals incident upon the array from 15°, 0°
and —10° w.r.t. the normal of the array with identi-
cal normalized data rate 0.5 and roll-off factor 0.5 but
different normalized frequency offset 0.2, 0.2 and 0.3
respectively. The signal powers are again 0 dB, 0 dB
and 10 dB respectively. The signals from 15° and 0°
are considered as the desired signals. SNR = 0 dB.
In the experiment, the estimated steering vectors of
the two desired signals are obtained by iteratively solv-
ing Eq.(4). Then the block data adaptation given by
Egs.(15) and (16) with block length being equal to 5
samples is employed. The output SINR, are plotted in
Fig.2. We observe that the output SINR of the signals
converge after 600 samples.
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Fig.2 Output SINR of the two desired users

5. CONCLUSION

The improved CAB algorithm provides a solution of
user allocation in an agile beam system to achieve more
efficient frequency re-use by improving the system per-
formance for multiple users working at the same fre-
quency.
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Abstract

In this paper, time-frequency distributions
(TFD) are applied for interference excision in spread
spectrum communication systems. The focus is on
Jjammers consisting of pulses of constant envelop
Jfrequency modulated interference. The time-support
and the instantaneous frequency (IF) information
provided by the TFD are used to reduce the jammer
effect on the receiver performance. This is achieved by
applying an excision notch filter with a null placed at
the interference IF. The filter is turned on and off in
synchronous with the interference duty cycle. The bit
error rates at different frequencies are given and
compared  with  those obtained using  the
multiresolution analyses.

1. Introduction

Direct Sequence Spread Spectrum (DSSS)
systems are widely used in communications in a variety
of applications including suppression of a strong
interfering signal due to jamming or multipath
propagation and providing multiple simultaneous use of
the same spectrum. These systems, however, are not
jammer proof. In order to increase their jammer
resistance, many existing DSSS systems are augmented
with other forms of signal processing, which act on
improving receiver characteristics and increasing the
overall jammer resistance [1,2]. Linear excision filters
are often used to mitigate interference. The filter
coefficients can be generated using various estimation
methods, including block high resolution and adaptive
least mean squares techniques. Most of the existing
interference excision algorithms, however, assume a
stationary ~ environment, or jammers with slowly-
varying spectral characteristics. As such, receiver
performance becomes unsatisfactory under highly
nonstationary conditions and rapidly changing jamming
environment. It is therefore desirable to devise excision

0-8186-7576-4/96 $5.00 © 1996 IEEE
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methods which are based on jammer characteristics in the
time-frequency domain, where the nonstationary
characteristics of the jammer are revealed and accurate
information on its power localization in both time and
frequency is provided. In turn, one may be able to
remove the nonstationary jammer with minimum
distortion of the desired signal.

Two time-frequency based interference excision
techniques have been recently proposed for improved
receiver performance under nontraditional jammers. In the
first approach, interference excision is achieved using
time-frequency  distributions. This approach was
introduced by Amin [3] and detailed in [4,5,6]. In this
case, the interference instantaneous frequency, obtained
using appropriate time-frequency distributions, is used to
form a time-varying linear phase excision filter. This
filter has a notch which is in tune with the jammer IF.
The second approach is based on multiresolution
analysis[7], where the energy localization properties of
the wavelet transform are employed to overcome the
windowing effects associated with the short-time Fourier
transform. For jammer excision, the wavelet transform
is applied to the data and the coefficients of highest
values, representing the jammer energy, are then
removed. From the nature of these two techniques, it is
clear that while the time-frequency distribution excision
methods are most efficient for constant envelop frequency
modulated signals, where the jammer energy is
concenterated around its IF, the wavelet transform is
primarily effective when the jammer energy is captured
in one or few of the transform bins. The later requires the
wavelet tiling of the time-frequency plane to be in close
match with the jammer characteristics.

In this paper, the performance of the above two
techniques under pulse jamming is investigated. The
jammer is a train of sinusoidal or chirp pulses with fixed
duty cycles. The time-frequency distribution using
several kernels including Wigner, Choi-Willimas, the
Cone shape, and others offer the means to detect the
beginning and the end of each pulse [8]. Additionally,
these kernels yield a good estimate of the jammer




instantaneous frequency during the pulse period. As such,
the excision filter can be designed with an appropriate
notch and can be turned on and off according to the duty
cycle of the jammer.

In Section 2, a brief review of TFD is presented
with discussion on the interference excision systems
based on the instantaneous frequency estimate. The
wavelet transform, as it is applied to the underlying
problem is discussed in Section 3, and Section 4
presents the results of the bit error rate simulations
where the TFD-based excision and the wavelet transform
excision techniques are compared.

2. TFD Interference Excision Systems

Time-frequency distributions (TFD) are uniquely
characterized by a two dimensional function, which is
referred to as a "kernel”. The t-f kernel can be designed
such that the corresponding TFD satisfies several desired
properties. For a full discussion of the time-frequency
distributions and kernel design methods, the reader is
referred to reference [8]. Among the desired t-f properties
is the capability to satisfy the instantaneous frequency
condition. Generally, this property allows the TFD to
encounter peaks at the derivative of the phase of each
signal component, irrespective of their time-varying
nature.

The time-frequency distribution C, of the

signal f(t) is defined as

Crvare)= [ [ott-wo)ftu+e/2)f u=r/20e dude
- H

where "t" is the time index and “f" is the frequency index.

The t-f kernel ¢(f,7) is a function of the time and lag
variables. The well known Wigner distribution is a

special case of (1) with¢(z,7)=46(t). A closer look at
equation (1) reveals the simple fact that the TFD is the
Fourier transform (FT) of an estimated autocorrelation
function. However, contrary to the common way of
performing time-averaging, the dependency of ¢(z,7) on
T allows the autocorrelation function estimation to be
different for different lags.

In addition to the instantaneous frequency, there
are other cominon desired properties which qualify a TFD
for proper representations of signals in time and
frequency. These properties include the time support and
frequency support. Both properties are important for the
cases of excision of pulsed and bandlimited jammers,
since they, respectively, allow the TFD to be zero
(shows no power) at all time instants and frequency bins
where the signal is not present. The TFD should also
satisfy the marginals properties in which the distribution
of signal power over only the time variable or the
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frequency variable can be separately obtained from the

joint TFD. Output
_Input
IAdjustable Filter Correlator

T T

TFD Copy
IF Estimate Filter

PN (receiver)

Fig.1 TFD Excision System

The interference excision system based on the
TFD is shown in Fig.1. The IF is estimated using t-f
kernels with desirable properties. Most importantly, the
IF and time-support conditions must be satisfied. The IF
is used to define a notch of a three coefficient zero-phase
filter. This filter is applied to both the input data and the
PN at the receiver. The output of both filters are then
correlated and a decision rule is applied . In the
simulation section, the Choi-Williams kernel is used for
IF estimation.

3. Wavelet Domain Excision

Much research has been accomplished applying
wavelet and multirate methods to communications [ 9.]
and in particular, to the interference excision problem
[7]. For this study, a standard discrete wavelet transform
(DWT) is performed on the received spread spectrum
binary phase shift keyed (SS-BPSK) signal (rectangular
pulse shaping) and the resulting coefficients, representing
the signal in the wavelet basis, are modified via an
excision rule that zeroes out the highest 10% of the
transform coefficients. The reader will take caution that
this is only one of many excision rules available, and is
not necessarily optimal for this application. It is an
intuitively appealing rule in the sense that the DWT
decomposes signals into dyadic subbands which localize
narrowband interference. Assuming the jammer to signal
energy ratio (JSR) is sufficiently high, this localization
causes the coefficients in the frequency bin where the
narrowband interference lies to be significantly greater
than the rest of the transform coefficients. Except for
high frequency interferers, excising the highest ten
percent of the coefficicients is sufficient to remove the
noise. Unfortunately, a significant portion of data is lost
as well.

The communication system simulated in this
work consisted of a BPSK signal with a pseudo-noise
(PN) spreading code applied at the transmitter, additive
white gaussian noise (AWGN,) and constant frequency
and frequency modulated continuous wave (CW) jammers
with energies. At the receiver, the DWT output was sent
to the excision block followed by despreading of the




wideband signal and a correlator. A signum based
decision rule provided the data estimates. Spreading codes
of 128 and 32 chips per bit were employed 10% jammer
duty cycle. Typically 128 bits were simulated at a time
and an 11- or 13-level DWT (12 or 14 dyadic frequency
slots) was performed on the entire spread sequence. At
128 chips per bit, this means a transform length of
1287 = 2", hence the choice for number of levels in the
DWT. The sampling rate for the system was chosen to
be 1 sample per chip - effectively limiting the highest
frequency jammer to half the chip rate. However, the
first-null bandwidth of SS-BPSK is the chip rate, and
hence only jammers in the lower half of the spectrum are
considered. This is not a crucial issue, since TFD
methods are not frequency dependent and so they are
unaffected by this limitation, and the tiling of the DWT
is such that signals with frequencies in the upper half of
the spectrum only worsen the performance.

4. Simulations

Fig.(2-a) compares the bit error rates in the case
of pulsed sinusoid with (1/7.1) normalized frequency
using 128 chips/bit for the TFD and DWT excision
methods. In addition, the BER corresponding to no
preprocessing is also shown. For the TFD method, we
have included the BERs with exact IF as well as
estimates of the IF using equation (1) with 128 and 8 bin
FFT. It is perfectly clear that all TFD BER curves are
significantly better than the DWT method. The 128-bin
FFT outperforms the 8-bin FFT, due to bias caused in
the IF estimate using fewer frequency bins. It is
noteworthy that exact IF provides no errors up to 80 &
Jammer-to-signal ratio.

Fig.(2-b) shows the same set of curves as
Fig.(2-a), except we now use 32 chips/bit. The relative
behavior of the two time-frequency excision methods
remain approximately the same. Overall, the reduction in
the gain leads to an increase in the bit error across the
JSR. The experiments conducted for Fig.1 were repeated
using higher frequency (1/2.3). The corresponding
BER curves are shown in Fig.(2-a,b). The superiority of
the TFD methods remain invariant. Fig.3 shows the
BER curves for the case of a pulsed chirp jammer, using
128 and 32 chips/bit. The performance of the TFD is
slightly deteriorated from the case of fixed sinusoid.
Still, the TFD has a remarkable performance which
drastically improves over the DWT performance.

5. Conclusions

The interference excision system based on time
frequency distributions shown in Fig. 1, outperforms the
wavelet transform excision method for constant envelope
pulsed interference of either constant or modulated
frequency. Using exact IF information yields better
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results than IF estimates, but this is to be expected. In
defense of multiresolution methods, however, it should
be noted that the jammer types considered here are not
conducive to MRA decompositions, and as a matter of
fact, a regular FFT outperforms the wavelet in this
scenario, especially for constant frequency jammers.
Pulsed interference without IF information (bursts of
uncorrelated energy) were not considered in this study,
but it is suggested that the TFD methods would not
perform as well in this case, and the performance of the
wavelet excision scheme would improve.
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Abstract

This paper describes a non-linear adaptive equalizer
based on a sub-optimal HHM formulation leading to a small
computational complexity. A similar approach was already
proposed in the monochannel case in [4], and we show
here that, in a multichannel context, large improvements
are obtainable. It is well known that Maximum Likelihood
methods are subject to local minima problems. Although of
reduced importance in our previous approach (due to the
on-line adaptation), the problem was still present. Since it
is now well known that in the multichannel case, the blind
equalization problem has a unique minimum, one can hope
that the local minima problems can be solved in this context.
However, a straighiforward formulation of the previous al-
gorithmin the multichannel case does not make it. Hence,
we propose a new algorithm allowing Conditional Means
estimates of the emitted symbols and blind identification
of each impulse response of the channels, involving alto-
gether a maximum likelihood formulation (by means of an
approximated EM algorithm) and a criterion making use
of the spatial diversity of the multichannel system. Simula-
tions are provided, showing the identification of the impulse
responses of the various channels, as well as the symbol es-
timation performances in terms of Bit Error Rate (BER). The
improvements over the single channel case are highlighted.

1. Introduction

We consider here reception through multiple sensors. In
this case, the various sensors receive different continuous-
time waveforms due to the different physical channels that
separate them from the transmitter. However, after sam-

0-8186-7576-4/96 $5.00 © 1996 IEEE
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pling at the symbol rate, the corresponding received discrete
sequence can be modeled as the output of a Finite Impulse
Response (FIR) Filter.

In the recent years, following the work by Tong, Xu, and
Kailath [5] many methods have been proposed in order to
equalize such systems, relying on the fact that the received
signals have a rank-deficient correlation matrix [1]. Initially,
these methods were proposed in block versions. This block
formalism does not allow a tracking of the channels (when
they are time-varying) and has the drawback that the corre-
sponding arithmetic complexity is required by bursts, a fact
which either requires a large hardware or introduces a large
delay. Very few methods allow an on-line processing of the
data as they come. Furthermore, they usually do not explic-
itly take into account the effect of noise. Finally, acommon
feature of these methods is that they rely on structural prop-
erties of the channel, meaning that they do not use any a
prioriknowledge about the input, which is often available at
no cost in a communication situation. For instance, it can be
useful to take advantage of the fact that the emitted symbols
are taken from a discrete finite alphabet.

The algorithm derived in this paper is an adaptive one,
providing at each step an estimate of the impulse responses
of the multiple channels (thanks to the combination of two
criteria which results in a good tradeoff between residual
error and sensitivity to initialization), as well as a Condi-
tional Mean (CM) estimate of the symbols currently stored
in the channel memory; The Hidden Markov Model (HMM)
is used here in a sub-optimal way so that it does not involve
the high computational complexity which is the issue of such
an approach. Note that the model formulation is usable at
areasonable cost only by the use of the a priori knowledge
that the emitted sequence belongs to a finite alphabet. Note
that all computations provided in this paper are given in real
variables. The extension to complex ones is straightforward.




2. Problem formulation

Notations are as follows:
-VT denotes the transposition of vector V
-6 = [9(™(1)...8*)(L - 1)] denotes the 1mpulsere—
sponse of the channel from the transmitter to the nt* an-
tenna. (L being the channel memory length of all impulse
reSpOnses).

- b(™)(t) is the additive noise on the n** antenna. We
assume these additive noises to be mutually uncorrelated.
N being the number of sensors, B;, denotes the following
vector:

B, = O ). 4N @)

- The transmitted sequence z is independent and iden-
tically distributed (iid), and can take M different values
g, k = 1...M depending on the modulation. X is the vec-
tor containing all symbols stored in the channel memory at
time ¢:

= [z(t)z(t - 1)..2(t— L+ 19

Then, the signal received at time ¢ on the n'* antenna is
given by:

¥ (t) = Iiﬂ(")(i)w(t — i) +5)(2) (1)
i=0
Thus, we have the stationary model:
Y, =87 X, + B (2)
with matrix © and vector Y, defined as:
e [0 o)) (3)
Y, O @)..... s )

The model described by (2) defines a Hidden Markov Model
inwhich X is the state vector of a Markov process described
by the following state equation (T being a shift matrix):

Xt+1 = TX: + .’l)(t =+ 1) * [IOO]T

This hidden Markov process is only reachable through
the observation equation (2) which is identical to that corre-
sponding to a transmission through a single channel. How-
ever, the hidden process can be reached through N different
observations, which is the explanation for the improved per-
formances of the multichannel algorithm in terms of BER.

3 Conditional Mean (CM) estimate of the
emitted sequence

Suppose that current estimates of the channels 0, , N =
1,---N and of the state vector X, 1jt—1 are available at
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time ¢. The state probabllmes corresponding to the Forward
recursion [2] (ie Pr(X] = [gig--Gip 1)) 18, 11,..,Y2)
would be very computationally demanding, even for moder-

ate length channels since it requires the calculation of M L
probabilities at each step. We use here the approximation
derived in [4] which allows the amount of such calculations
tobe only M x N: in this approach, instead of computing the
joint probability of all components of vector X, we evaluate
the probability of each component separately, conditioned
by the current prediction of the other ones. This prediction
is obtained by taking advantage of the shift structure of the
process X. X ,(’t)_l being the prediction of the j** compo-
nent of vector X;, knowing the observationsup to time ¢ — 1,
we have X t(|Jt)—1 =X t(]_ Illt)_l. Let agft)( k) be the probability
that the j** symbol in the channel memory be equal to gz,
knowing the observations up to time #, the current estimate
of the channels parameters (@,) and the prediction of all the
other symbols stored in the channel memory. Then, thanks
to the so-called forward recursion, we can write: and:

a(k) Pr(X¥ = g%, ... Yo, 8, X)L 14 )

%2t tlt-1
(] 1|1z) (RN (Y - 0T Xm1iar)) (5

Where V() is the N dimensional Gaussian distribution,and
X,,t 1(J, q&) is the vector Xﬂt , where its j'* component

is replaced by k** possible choice gy, in the alphabet :

(L-1
At|t 1(k) = [ tlt) 1~'~‘Ik-~Xm 1)]
, then, the estimate of vector X is given by:
o H(0)  &(L-1)
Xt|t = [Xt(lt)'Xt(h ']T

Where XU is the Conditional Mean Estimate of z;_;:

t|t
(
Z "‘tft)

The estimate of the emitted sequence being performed,
we now focus on the update of the multi-channel impulse
response.

FU) —
At|]t

4. Estimation of the channel parameters by a
combination of two criteria

The parameters are estimated by minimizing a criterion
which is a linear combination of a criterion based on the
spatial diversity of the system C;(®) on one side, and of
L(®), the expected log likelihood, on another side. Both
criteria are evaluated with an exponential forgetting factor
)\, as we wish tracking slow variations of the channels:

Qu(©) =Y X1 ~ 0)Li(8;,8) + aCy(8)]

i=1

(6)




4.1. Calculation of the expected log-likelihood

The criterion we deal with in this section is the so-called
Kullback-Leibler function of the Expectation-Maximisation
(EM) algorithm, defined as the expectation of the logarithm
of the likelihood function for the complete data calculated
at time t(see [3] for the terminology):

Li(8:,8) = E(logN (Y, X1; ©) |1, .., Yi; ©,)

ML

> Tuye(Dlog(N (X¢ = &IYi, .., Y, ©)
=1

ML

> L)Y, - €7

=1

Lt (éta ®)

M

where ¢, is one of the M T possible realizations of vector X,
and I'; (/) is the conditional probability of the state: T (1) =
PT’(X; = fll)fl y ooy Y't, Gt)

Because of the approximation developped in the previous
section, consisting in computing conditional probabilitics
instead of joint probabilities , we have to deal with to the
so-called "pseudo-likelihood": basically, we approximate
each I'; (1) which is defined as the joint probability on every
component of X;, by the product of the conditional proba-
bilities of each component, given the prediction of the other
ones:

. L-1
P(XT = (@io, 931, ooy @i IVes . Y0, 00) = [ 087 (in)

n=0

The expansion of this calculation (for high SNR levels)
leads to the following expression of the expected pseudo-
likelihood at time 1 :

N
L(6:,8) =3 |yi" - X700 (8)
=1

4.2 Criterion based on the spatial diversity of the
system

We use the criterion described in [5]. Under the assump-
tion that the impulse responses of the various channels have
no common zeros, it can be shown [5] that this criterion has
a single solution. This property is useful in our case since
the EM algorithm is known to have local minima. Moreover,
even if the log likelihood involved in this multi-channel case
takes explicitly into account the effects of the noise, it does
not take full advantage of the spatial diversity of the system.
It is expected that a suitable weighting of both criteria can
solve the local minima problem, while maintaining the ro-
bustness towards noise close to that of the EM algorithm.
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Only simulations support this claim at that time. Physically,
the criterion relies on the fact that the output of each antenna
corresponds to the filtering of the SAME input vector by dif-
ferent filters. Consider 2 antennas among the N ones: If
we filter one received signal by the impulse response of the
other antenna and vice versa, both outputs will be filtered
by the same coefficients, hence should be equal (up to the
disturbances introduced by the noise). This criterion can be
written in many different ways. We have chosen :

Ct(@) = Z I}ft(m)g(n) - Yt(")g(m)IZ

ngm

©)

where Y™ = [y(™(t)..y(™(t — L +1)] Note that other
criteria share the same property and could be used in con-
junction with the approximate log-likelihood.

4.3 Maximization step

The maximization over each channel () is performed
by computing the partial derivatives of Q(®) according to
6. Finally, the channels estimates are obtained recursively
by:

Q)

A - n AT & >
t41  — gt(n) +(1-a)R; 1(y5 - 95 ) tht)/\ﬂt

+C\'It(n)—1 Z (Yt(m)ggn) _ Yt(n)egm))yt(m)T

m#n

R; and I{™ are defined as follows:

R, = ARy + X XT
IV = A 4y Ty (10)

Their inverses can be computed recursively using the inverse
matrix lemma ([4]).

5. Experimental results
5.1. Adaptive behavior

First consider the adaptive behavior of the algorithm, on
a BPSK modulation, with N = 2, on non-minimum phase
channels, A() = [0.150.90.3] and ~® = [0.30.30.3],

Usefulness of the criterion based on diversity Fig.1
shows the evolution of the taps of the first channel A1),
using a straightforward extension of the EM algorithm used
in [4] (no spatial diversity explicitly taken into account). It
is seen that the algorithm converges to a local minimum of
the likelihood corresponding to a minimum-phase channel
: h(1) = [0.90.350). Fig2 corresponds to a = 0.3, and the
algorithm converges to the true parameters.




Usefulness of the MAP estimate The usefulness of
L;(H) in the criterion is easily seen by comparing on Fig3
the MSE on the parameters estimates for a = 1 (C; only)
and « = 0.3. As the likelihood takes more efficiently the
noise effects into account, the parameters produced by its
minimization are more accurate than the one obtained when
minimizing C;(H) only. Both simulations were initialized
to the same values (1) = h® = [1 00}, and performed with
a 10db SNR at the output of the channels.

5.2. BER results

Fig4 compares the BER obtained by using two channels
(R and A® altogether) to that obtained using a single
channel (N = 1 on either A1) or h(2)), The improvement
is significant, while the computational cost involved for the
multi-channel case is still linear with the channel memory.

6. Conclusion

This paper proposes a new algorithm, which couples
two different and complementary blind equalization meth-
ods.The first one based on ML identification of the channels

taps, and detection of the symbols thanks to a HMM for-
mulation, brings robustness towards noise. The other one
is based on a criterion involving the spatial diversity of the
system and tends to constrain the solution to be unique. The
proposed algorithm is shown to take advantage of the com-
plementarity of both criteria, especially avoiding the prob-
lem of the local minima of the likelihood, while providing
accurate results in case of poor SNR. Moreover, the fact that
the algorithm is adaptive allows a real time computation
without the high computational complexity of the HMM-
based classical methods. This has been obtained by the use
of a suboptimal HMM formulation which has nevertheless
a good efficiency.
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Abstract

We present in this paper an multiple objective optimiza-
tion approach to fast blind channel equalization. By in-
vestigating first the performance (mean-square error) of
the standard fractionally spaced CMA equalizer in the
presence of noise, we show that CMA local minima exist
near the minimum mean-square error (MMSE) equaliz-
ers. Consequently, CMA may converge to a local mini-
mum corresponding to a poorly designed MMSE receiver
with considerablely large mean-square error. Based on
the multiple objective optimization techniques, we pro-
pose next a blind channel estimator by ezploiting simul-
taneously the second-order cyclostationary statistics and
the constant modulus of QAM-type communication sig-
nals. Such a channel estimation-based blind equalization
scheme has the advantage of designing FIR minimum
mean-square error equalizer with the optimal delay.

1. INTRODUCTION

Blind equalization has the potential to improve the effi-
ciency of communication systems by eliminating train-
ing signals. Difficulties of its application in wireless com-
munications, however, are due largely to the character-
istics of the propagation media — multipath delays and
fast fading. The challenge is achieving blind equaliza-
tion using only a limited amount of data.

A widely tested algorithm is the constant modulus al-
gorithm (CMA) [5, 10]. In the absence of noise, under
the condition of the channel invertibility, the CMA con-
verges globally for symbol-rate IIR equalizers and frac-
tionally spaced FIR equalizers [4, 6]. It is shown in [3]
that CMA is less affected by the ill-conditioning of the
channel. However, Ding et. al. [2] showed that CMA
may converge to some local minimum for the symbol-
rate FIR equalizer. In the presence of noise, the analysis

This work was supported in part by the National Science
Foundation under Contract NCR-9321813 and by the Ad-
vanced Research Projects Agency monitored by the Federal
Bureau of Investigation under Contract No. J-FBI-94-221.
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of convergence of CMA is difficult and little conclusive
results are available. Another drawback of CMA is that
its convergence rate may not be sufficient for fast fading
channels.

Another approach to the blind equalization is based
on the blind channel estimation. Some of the re-
cent eigenstructure-based channel estimations (see e.g.
[7, 8]) require a relatively smaller data size compar-
ing with higher-order statistical methods. However the
asymptotic performance of these eigenstructure-based
schemes is limited by the condition of the channel
[12, 13]). Specifically, the asymptotic normalized mean-
square error (ANMSE) is lower bounded by the con-
dition number of the channel matrix. Unfortunately,
frequency selective fading channels with long multipath
delays often result in ill-conditioned channel matrices.

The key idea of this paper is to combine the approach
based or minimizing the constant modulus cost and
that based on matching the second-order cyclostation-
ary statistics. The main feature of the proposed ap-
proach is the improved convergence property over the
standard CMA equalization and the improved robust-
ness for ill-conditioned channels.

2. THE MODEL

Fractionally sampled channel and its equalizer can be
represented by the cascade of a single-input multiple-
output (SIMO) channel and a multiple-input single-
output (MISO) equalizer. The system equations are

given by
Ly—1
zs") = z hg-’)sk—j + 'wf:) i=1,---, M (1)
i=0
M L_f—l
wo= 300 A7 @)
i=1 j=0

where A(9), f(!) are the ith (sub)channel and its equalizer
with length Ly, Ly respectively, s,w, z,y are transmit-
ted symbol, additive noise, received data and equalizer




output respectively. In matrix form, we have

Xx = Hsr+we (3)
Y = %, = qHs;, + 5wy 4)
q £ H, (5)

where (-)¥ denotes Hermitian, H is channel matrix and
q is the combined channel. We shall make the following
assumptions:

Al: The input sequence {si} is zero-mean and
E{swsi}=8(k-1).
sx has the constant modulus property (CM) |sx| =
1.
A2: Noise wsci) is zero-mean, white Gaussian with vari-
ance o>.
3. PROPERTIES OF CMA EQUALIZERS

The analysis in this section is restricted for real param-
eters and equiprobable binary source. Generalizations
of the complex case are readily available. The CMA
minimizes,

J(f) £ B{G -1} (6)
= 3flig —20fp —2llalla +1, (D)
where ||f||g is 2-norm defined by VI*Rf, ||qlfs is 4-

norm defined by (Z qf)%, and

R 2 E{xxxi} = HH' + ¢’L. (8)

In [14], it has been shown that CMA equalizers must
be in the signal subspace spanned by the columns of H.
Therefore the analysis of CMA can be carried out in
the combined channel q defined in (5). The equivalent
CMA cost function is then given by

J(q) £ J((H")'q) = 3llallp —2llaliF —2llall: +1, (9)

where & £ H'R(H®)!. In the absence of channel noise,
it has been shown that the CMA using fractionally-
spaced equalizers converges globally [6] to one of zero
forcing equalizers, i.e., qc = €,,V1 < v < ng where
e, a unit column vector with 1 at the vth entry and
zero elsewhere. In the presence of noise, some minima
may become local minima. In this section, we study
the locations of these CMA equalizers. Specifically, we
will study the neighborhoods of MMSE equalizers which
minimize

J4(£) 2 E{(y — sh-v41)’}, (10)
where v is the delay of the equalizer. Note that the
CMA does not have control of the delay v due to the
nature of the blind equalization.
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There are several reasons to choose this type of re-
gions. Since the MMSE equalizer is the optimal linear
equalizer, any equalizer which is far away from it has
a large MSE. Therefore, if there exist CMA local min-
ima in these regions, one of the minima must be the
optimum CMA equalizer which has the minimum MSE.
The other reason is the strong relationship between the
MMSE equalizer and the CMA equalizer. This can be
seen when the noise approaches to zero.

Without loss of generality, let’s consider q in the
neighborhood of MMSE equalizer g, at delay v = 1.
q and & can be partioned into

c)
)

301 a ¢
q= a )’ b C

where qr is the intersymbol interference part, § repre-
sents the signal energy, and 1 — 8 is the bias between
the ZF equalizer and q.

In order to locate the CMA equalizer (the minimum
point), we need following definitions, given the MMSE
equalizer Q7 = 01, Gruil,

A

32 (11)

5§ £ |la - amlic (12)
s (1%)
© & oo (%)
() & -2 +50) (15)
a(6) 2 88+ o) =21+ +rm)) (16)
D(§) 2 ci(8)® —4ca(6)co- (17

The following theorem gives a sufficient condition of the
existence local minimum, its location and also gives the
size of the region.

Theorem 1 Under the condition that J5(fm) < &, if
D(|lami|l2) < 0, then there ezists a local minimum in

(18)

B2{0<6<6,05<0 <05},

where
by = 6>0,1[1,1(f&)<0{6} (19)
. ) —51(5)—\/51(6)2—4cz(6)co{
o= m\/ 262(8) (20)
N ECEN a1 O
YT ogscen 2¢2(5) N

This theorem provides an expression D(||qmil|2) to de-
termine the region of cylinder B which includes the




CMA equalizer. The procedure only needs the parame-
ters of the MMSE equalizer.

Perhaps the most interesting concern is the MSE of
the CMA equalizer. With the result of Theorem 1, we
are ready to give the answer.

Theorem 2 (a} The MSE of the CMA equalizer in B
is bounded by

2 _ 2
(bv = bm)° <AE< (z = 0m)° + 8263, (22)
—_— ~ e Y
AEp Aty

where AE is the extra MSE, ie., AE 2 J4(q.) -

Jr(qm). (b) Let AEYG be the upper bound of CMA equal-
1zer associated with delay v, then the MSE of the opti-
mum CMA equalizer is upper bounded by

Eoo = min{&;, + ALY (23)

(c) The MSE of CMA is approzimated by

(6, — 6.’
Om

—

A = = 4£2, 4+ O(£L). (24)
The consequence of these theorems is twofolds. (i) The
CMA equalizers are very close to the MMSE equalizers;
(ii) There may exist a CMA local minimum in the neigh-
bourhood of a MMSE equalizer which has significantly

large MSE.

THE MULTIPLE OBJECTIVE
OPTIMIZATION APPROACH

To avoid the undesirable local minimum of CMA, one
can use the channe] estimation based equalization ap-

4.

proach. Once the channel is estimated, an MMSE equal-
izer can be constructed by selecting the optimal v in
(10). Furthermore, this approach provides the flexibility
to design other types of receivers, such as decision-feed
back equalizer, or maximum likelihood sequence estima-
tor.

Considered in this paper are the costs associated with
the constant modulus property Jear(h), the second-
order statistics Jor(h), and the observed data Jg(h):

Jom(h) = Y (lwf* -1y (25)
Jor(h) = Zlm(m)-r‘u(m)lz, (26)
Jo(h) = 1'1"’Qh. (27)

Note that the optimization of Jg(h) leads to, among
a number of eigenstructure-based algorithms, the least-
squares [7] or the subspace channel estimators [8]. Ma-
trix Q in Jo(h) can be obtained from the data directly.
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Both Jor(h) and Jg(h) involve the second-order statis-
tics (in different ways) whereas Joar(h) involves the
higher-order statistics. We present next the weighting
and the constrained approaches, the two frequently used
techniques in multiobjective optimization, to the opti-
mization of the above cost functions.

4.1. The CM-CF Algorithm

The CM-CF algorithm is derived from the weighted op-
timization of the constant modulus cost Jeam(h) and
the correlation fitting cost Jer(h):

h = arg min aJom(h) + BJor(h),
hex~ =~ d
J(h)

where a, § are weights of the two cost functions respec-

(28)

tively. H is the subspace contains the channel vector.
In practice, H may be constructed from the principal
component structure of the fading channel [11].

The difficulty of this optimization is that the explicit
form of the constant modulus cost J¢ m(h) as a function
of the channel is unknown. Fortunately, from the anal-
ysis in Section 3, the constant modulus equalizer can be
approximated by the MMSE equalizer which can be ob-
tained once the channel is estimated. A gradient search
is used to minimize J(h),

fln+1 = fln - Ilvh‘](ﬁﬂ)v (29)

where g is a step size.

4.2. CMA with Subspace Constraints

In the constrained approach, we consider the following
optimization

h=arg m}iln Jom(h) subject to Jo(h) < a||h|]. (30)

When Q is constructed from the true covariance ma-
trix Rz, the “true” chanmel is in the null space of Q
and the channel identification becomes one of finding
the eigenvector associated the zero eigenvalue. When
the estimated covariance matrix is used and the chan-
nel is close to be unidentifiable [9], the null space is no
longer easy to determine. It is therefore reasonable to
extend the subspace to include additional dimensions.
Mathematically, we may view this approach as restrict-
ing the channel vector in a subspace that the quadratic
cost Jg(h) is constrained by an upper bound. Let V be
the linear subspace in which

Jo(h) < af/h|f3 (31)

for some pre-specified a. As a suboptimal approach to

(30), the channel estimator is then obtained from the
following constrained optimization

Jon(h).
v

min
her

(32)




The above optimization can then be transformed into
an unconstrained optimization. It can be shown that
C = H[V can be obtained from the span of the eigen-
vectors associated with the smallest several eigenvalues
of matrix ® = BFQB. A gradient-type optimization is
used similar to (29).

5. SIMULATIONS

The class of two-ray multipath fading channels with in-
dependently faded components is used in the simulation.
The channel impulse response is given by

2

h(t) = Z aip(t — 7i), (33)

i=1

where {a:} are independent zero-mean complex Gaus-
sian variables; p(t) is the raised-cosine waveform with
roll-off factor 0.25 and the length of 6 symbol intervals.
Uniformly distributed in [0, 2T] (T is a symbol inter-
val), the delays {r:} are statistically independent. The
signal is sampled at twice of the symbol rate.

We compared the mean-square error of the equalized
channel using (i) the CM-CF approach; (ii) the CMA
with Subspace Constraints; (iii) the Least-Squares CMA
(LSCMA) [1]; (iv) the MMSE equalizer constructed
from the subspace channel estimator. The cumulative
percentage of the channel estimates for a fixed MSE is
computed and shown in Fig. 1. When compared with
the LSCMA algorithm (the dashdot line), the proposed
algorithms (the solid and dashed lines) has consider-
able improvement for the small MSE, such as the MSE
less than 0.02, and improvement is reduced as MSE in-
creases.

2127 30 data

cumulative percentage (%)
o
S

o :
"o 001 002 003 004 005 0068 007 008 009 o1
MSE

Figure 1: Performance comparison.
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Abstract
In this paper we introduce several modifications to the
Baum&Welch (BW) formulas used to reestimate the
parameters of a Hidden Markov Model (HMM). The
estimated parameter is the channel impulse response (CIR)
of a communication system which is known to be time-
varying. With these modifications, channel tracking
properties of a BW-based algorithm are improved. The
resulting algorithm is tested in a specific mobile radio

environment (the GSM system), exhibiting good
performance at expenses of higher computational
complexity.

1. Introduction

It’s well known that no high-speed band-limited digital
communication can be carried out without the help of an
equalizer. Conventional approaches to the adjustment of this
equalizer require the transmission of a training sequence (i.e.
known a priori by the receiver and the transmitter), which
provides an accurate initial estimate for the equalizer taps;
afterwards, slighter adjustments can be made on-line to adapt
this first estimate to the, almost always, changing
environment. Of course, the transmission of these training
sequences, when possible, brings down the capacity of the
system. For that reason, there is an increasing interest around
blind equalizers [1,2,3] which deal with the problem of the
adjustment without training sequences (i.e. blindly).

In {3], an Estimation-Modification (EM) Viterbi-based
algorithm is proposed to perform jointly a Maximum
Likelihood (ML) channel estimation and sequence detection.
However, modelling the received signal as a HMM allows us
to make use of the complete theory developed for these
models. For example, the Baum&Welch (BW) algorithm
was proposed in [7] to estimate the parameters of the
channel and the characteristics of the modulation. This
algorithm is known to lead, at least, to a local maximum of
the likelihood function [4], what is not guaranteed by the
Viterbi algorithm (VA). In this paper, several modifications
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to this previously proposed algorithm are introduced to cope
with the special features of mobile radio channels.

2. Signal model

As mentioned before, the environment in which the new
algorithm is tested is the Paneuropean Mobile Radio System,
also known as GSM. In this system, a constant- envelope
Gaussian Minimum Shift Keying (GMSK) modulation
scheme with equivalent bandwidth (BT) equal to 0.3 is used.
The access strategy is TDMA with 8 timeslots per carrier
and 156.25 bit-intervals per timeslot in Normal bursts. At the
chosen bit rate (270.8 kb/s), multipath propagation leads to
deep fades and to uncontrolled Intersymbol Interference
(ISI). Besides, and due to the mobile nature of the receiver,
Doppler effect is also observed.

channet
hoft)

BW
detector

ajn] 4n)

=

X,
wolt) °

Fig. 1: Transmission subsystem.

Taking into account the above mentioned features, the signal
at the input of the BW detector can be modelled as:

x[n]=1f(s[n])+wln] o)
where f(.) is a non-linear function of the present state s[n],
and {w[n]} denotes a sequence of zero-mean Gaussian

variables with variance 6* (AWGN). If we go on developing
an expression for f(.) we get:
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1-1
S e

i=0
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where h and d are the baseband equivalences for hy and d,.
For a modulation index of 0.5, ¢[n] can be expressed as:
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|

|

s
' g”i["] ’

Differentiating each component in the sum g?=Ze? with
respect to m° and m' we obtain:

ix{ty,-[n](x[n] —m§° —m,f' . n)}

1<is N3

a
_-;.6' -
ve=|™ Lo " (14)
a
an %{iyi[n](X[n —mfo —mf‘ -n)-n}
n=l
whose Hessian is positive definite unless
L
) Yyl =0 (15)
n=l1
(i.e. that state was not observed along the timeslot), or
L
c2) Yvilnl =viln] (16)

n=1
(i.e.that state was observed only once, when n=n,). In those
cases, of course, there is no sense in looking for a linear
approximation. From equating the gradient to zero and
carrying out proper transformations, we find that

w:A-(iy.-[nlx[nl-n)—s-(gy.-[nlx[nlj

=l (17)
' A
i = C'(g’y"[n]x{n])—f(EY"MXMn) (18)
& =13 Srloldnl-mit - 09
where
A=§:7.~["}, B=n§:.7.~["]'": C=n2:.7-["]'"2(20)
A=A-C-B

provide the components of the desired vector and an estimate
for the variance of the AWGN.

Finally, special measures should be taken for the cases
above mentioned in which m© and m{! remain undefined. In
the first case, cl), those components of the means vector are
not considered in order to obtain h. The method adopted is
blocking them with a (diagonal) Weighting Matrix to be
included in the LS estimate of step 3. The elements of such
matrix are a measure of the reliability in the estimation of
every component of vector m, as a function of the times this

state was observed along the sequence. To be precise:
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w, 0 0
: L
W= 0 " 0 w; =Z7’i[n] 20
. n=1
0 0 wy

In the second case, c2), the static estimate for m replaces the
linear approximation. That is:

L
Y 7ilnlxln]

m = ={n] @)
27;‘["]
n=1

ml{l =0

The resulting algorithm will be referred from now on as the
Time-Dependent BW (TDBW) algorithm.

5. Simulation results

We tested the performance of the algorithm for the
channels described in the ETSI recommendations. The speed
for the mobiles in each environment was chosen according to
[8]. Among all the cases, the most interesting ones were
RA250 and RA100 (Rural Area Environment; speed equal to
100 and 250 km/h), since channel coherence time-intervals
are the lowest ones. It should also be remarked that a
sampling rate of 2 samples/symbol ~ was considered to

compensate for possible timing errors.
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Fig. 2: Tracking for the first tap of a RA250 channel vs. time
in amplitude and phase for the proposed algorithm. Dashed
lines stand for the true channel; solid lines for the TDBW
estimate.
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Channel tracking properties of the proposed algorithm
are shown in Fig. 2 and Fig. 3. It can be observed that such
properties are good as long as the linear approximation for
the channel evolution is feasible. Comparing those figures
with those obtained with the ABW algorithm (Fig. 4), we
conclude that CIR tracking is now much less noisy.

In addition to this, now there is no need for waiting the
algorithm to converge within the first samples of each
timeslot. Moreover, the TDBW version is far more robust
against deep fades which usually make the ABW algorithm
to lose tracking. The reason for this robustness is that
TDBW is a batch-type algorithm, where every sample in the




timeslot is used to estimate the CIR in every instant (even
though in deep local fades), whereas in the ABW version the
estimate relies mainly on the previous and, maybe, already-
faded samples. Of course, those improvements are
conditioned to an approximately linear variation of the
channel, what is not required in the ABW algorithm.
However, if this requirement was not met, it would always be
possible to increase polynomial order to obtain a better

approximation for the channel evolution.
Estimated channel vs. True channel
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Fig. 3: Tracking for the first tap of a RA250 channel in

rectangular coordinates (Re{h,(t}} and Im{h,(t)}). Dashed
lines stand for the true channel; solid lines for the TDBW

estimate.
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Fig. 4: Tracking for the first tap of a RA250 channel vs.

time. Dashed lines stand for the true channel; solid lines for
the ABW estimate.
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Fig. 5: Tracking for the first tap of a RA250 channet vs. time
in amplitude and phase. Dashed lines stand for the true
channel; solid lines for the BBW estimate.
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The main advantage with respect to the BBW algorithm
described in section 3, is the ability to track the evolution of
the CIR along the timeslot, instead of approximating each
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tap by a constant value (Fig. 5). For mobile stations
exhibiting rather high speed, it reverts in a lower BER.

On the other hand, the main drawback of the proposed
TDBW algorithm is the increase in the computational burden
when compared with both the BBW and ABW versions.
And, what is more, now the number of parameters to be
estimated is double the quantity required before (m® and m"
vs. m), whereas the amount of data available to perform that
estimation is just the same (one timeslot). Consequently, for
CIRs exhibiting large delay-spreads such as HT (Hilly
Terrain environment), the variance increase in the estimation
of some components in m[n] is very severe and the
Weighting Matrix cannot prevent the system from
unstability. In those cases, the only way to make the
algorithm to converge is considering larger timeslots which
contain more symbols.

6. Conclusions

A new technique to include the time-varying nature of the
parameters of a HMM in the BW reestimation formulas has
been presented. The resulting algorithm for blind channel
estimation, TDBW, has been compared with those proposed
in previous references (BBW and ABW), and its
performance qualitatively evaluated in a very concrete
environment (the GSM system). The most important
drawback of the algorithm is its high computational cost.

Future work is concerned about applying the theory of
HMMs and the developed BW-based algorithms to other
communication environments such as Underwater Acoustics
(UWA), or in other communication problems.
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¢lnl=7 ﬁ:q[r]a[n—rh 6[n] 3)

r=—R

where g[r}e[0,0.5] are the weights corresponding to the
(sampled) gaussian-shaping pulse and 6{n}e {0,n/2,m,31/2}
accounts for the accumulated phase at instant n [5,6]. Now
we conclude that the number of transmitter symbols (bits)
involved in a single observation at the receiver is given by:
l,=lm+lc—1=(2R+1)+lc—1 “
However, the amount of ISI produced by the GMSK
modulator for BT=0.3 can be neglected without significant
performance loss. Under this simplifying assumption, which
reverts in a lower number of states and a reduced
computational complexity, we get that:
R=0=1 =1 5)
At this point, we can already model each observation in the
received sequence, x;=(x[1 ],x[2],..,x[L])T, as a probabilistic
function of the present state s[n]:(a[n],..,a[n-l,+1],0[n])T,
obtaining a description of x, as a first order HMM with
N=4.2" states.

3. Overview of the BW algorithm

On the basis of this first order HMM and by means of the
BW algorithm, it is possible to obtain a solution to the
problem of the identification of the unknown parameters of
the model, that is, o and h=(h0.,h,c.,)T [7]. To be precise,
the parameters really estimated are ¢* and the means vector
m=(m,..mN)T corresponding to the noise-free I1SI-corrupted
received signal associated with the N states of the system.
Assuming a FIR model for the channel, m is related to h
through the linear constraints:

m=Dh

h =D*m
where D:(d,,d;,..,dN)T is a NxlI, full-rank matrix containing
in its rows all the [-tuples, di=(d,»”), ..., di' T,
corresponding to the modulator consecutive outputs
associated to the N different states of the system. D* denotes
pseudoinverse. The batch Baum&Welch (BBW) algorithm,
thoroughly explained in [7], can be outlined as:

6

1. Projection of h on m by means of the additional
linear constraints:

m=Dh N

Reestimation of o and m using the BW

reestimation formulas.
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3. Least Squares (LS) estimation of h using again
linear constraints.
h=D*m
4. Repeat steps 1..4 until convergence.

@®

The BW reestimation formulas used in step 2, state as

follows:
iyi [n]xln]

=l

) 27,‘["] |

n=]

5213 St

n=1 =l

1<i<N

m;

€)

where vy [n] is the probability of being in state i at instant n
given the model and the observed sequence. However, these
formulas implicitly assume the CIR to be stationary within a
timeslot duration, what is not realistic when the timeslot is
long enough or the channel varies rapidly. Hence, we will
obtain other reestimation formulas to solve this problem.

4, Modified algorithm

Several strategies can be considered to cope with the
time-varying nature of the channel: estimating the CIR with a
recursive adaptation scheme such as LMS what is referred in
[7] as the Adaptive BW (ABW) algorithm; or fragmenting
each timeslot in subblocks. As opposed to those methods, we
will try to include the time-varying nature of the channel
directly in the reestimation formulas.

We can approximate the evolution of every tap in the
CIR, h;, by means of a polynomial in n:

hiln)=h 0 +h etk n (10)

For the channels specified in the ETSI recommendations and
assuming the speed of the mobile to be less than 250 km/h,

the linear approximation was observed to be good enough.
Assembling all the taps in a single column vector:

bln)=h+n" n (11)
and applying the linear transformation above described
ril[n]:DlAn[n]=D(h(0+h(1 -n)=m(°+m(] -n (12)

we observe that the evolution for the means is also linear.
Vectors m? and m'! will be obtained in order to minimize
the MSE given by the following expression:




Robust Blind Joint Data/Channel Estimation Based on Bilinear
Optimization

David Gesbert
PAB/RGF/RCN
France Telecom-CNET
92131 Issy-Les-Mlx, France
gesbert@issy.cnet.fr

Abstract

The problem of identifying/equalizing a digital com-
munication channel based on its temporally or spa-
tially oversampled output has recently gained much
attention (single-input/multiple-ouptut - SIMO - de-
convolution). In this contert, we propose a new joint
data/channel estimation method. Our technique re-
lies on the minimization of a bilinear MSE cost func-
tion, where the variables to be adjusted are the chan-
nel coefficient matriz and a linear equalizer. We
show that this a priori choice of a linear equalization
structure allows the derivation of a second-order uni-
modal criterion, leading to globally convergent identifi-
cation/equalization schemes. The proposed method is
completely blind in that 1) no assumption is required
upon the transmitted sequence statistics or alphabet,
and 2) it shows some robustness with respect to the
channel order estimation problem (thus improving on
most previous related works). It also allows the free
choice of a delay in the equalizer so that output noise
amplification can be optimized.

1 Introduction

In the context of digital radiocommunications, the
signals are transmitted through propagation channels
which introduce intersymbol interference (ISI). The
channels can be represented as FIR filters which have
to be identified and/or equalized for the transmit-
ted symbols to be recovered. Since the pioneering
work by Sato [1], all blind equalization techniques
(which do not rely on training sequences) have been
based on the use of higher-order statistics (HOS) of
the received signals, though HOS methods largely suf-
fer from slow and ill convergence problems [2]. Re-
cently, it was shown by Gardner [3] and Tong et al.
[7] that blind deconvolution based on the sole second-
order statistics was a feasible task, provided the ob-
served signals could be seen as the outputs of a SIMO
system with sufficient channel disparity (the differ-
ent channels-polynomials should not have any com-
mon zero). In this context, a number of contributions
have been made in which the transmitted sequence
or the channel coefficients are recovered through sub-
space decompositions of either the received data ma-
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trix (see the so-called deterministic methods [4,5,6]) or
the received data correlation matrix (see the stochastic
methods [7,8]). Other interesting approaches were also
studied in [9,10,11,12]. Here, we introduce a blind and
mainly adaptive estimation method in which a multi-
channel estimate and a linear equalizer are adjusted
so as to minimize an observation fitting cost function.
The possible local minima of the proposed criterion
are investigated and global convergence is established.
The presented algorithm shows several attractive fea-
tures which make it an interesting alternative to most
existing methods:

e First, it shows some robustness with respect to
the additive noise (though it is optimal only in
the noise free case) and to possible errors in the
channel order estimation.

o It also allows the use of any reconstruction de-
lays in the equalizer so that noise variance may
be optimized at the equalizer’s output.

Notations: R real part of a complex. E() statistical
expectation; ()* complex conjugation; ()¢ transposi-
tion; ()* trans-conjugation; | . | Ly-norm of a vector
or matrix; I identity matrix.

2 Multichannel representation

"The SIMO equivalent model of a digital communi-
cation system relies on the existence of a number L of
different linear time-limited digital filters (channels)

RY..., BE, driven by the same PAM/QAM sequence
sk, the noisy outputs of which are observed:

M
Th= Sa_phl+b, fori=1.L (1)
k=0

sy and b%,i = 1..L, are mutually uncorrelated pro-
cesses, not necessarily white. We assume (w.l.o.g.)
E |si|*=1, E |b}, |?2= o2. In the context of antenna-
array based reception, the channel A’ represents the
baud-rate impulse response of the propagation chan-
nel linking the transmitter and the i*» antenna (spatial




diversity). In a mono-antenna scenario, channel diver-
sity can still be obtained by means of temporal over-
sampling with a factor L (compared to the baud rate)
at the antenna output, leading to fractionally-spaced
(FS) reception. In the FS context, the channels h(?)
correspond to sampled versions (at rate T) of a sin-
gle propagation channel, at various sampling phases
(i — 1)T/L, i = 1..L (see [7] for more details). Here,
M denotes the ISI length.  We adopt the following
vectorized notations:

x, = [2},., L],
b, = [b%,., 0],
h, = [h,lc,..,,hi’]t,
h = [h(),..,hM]

Then, we have

Xp = hsy, ..., Sn_m]' +bn

2)

Consider the space-time
samples vectors Xp, = [x5,x4_q, -, x4 _nial's Bn =
t 1t ¢ t — t
n’bn—l""’bn-N+1] and Sp = [Sn,"',SnFP+1],

where N is the window size per channel and P =
M+N is the number of symbols involved in the expres-
sion of vector X,. The following linear model holds

Xn = T(h)S, + Bn, (3)
where 7T (h) is the so-called LN x P Sylvester matrix:

h(0) h(M) © 0
T(h) = s
0 0 h(0) h(M)

To enable blind deconvolution of our SIMO system,
we assume throughout the paper that (H1) 7 (h) has
full column rank P, with LN > P. In the follow-
ing, we concentrate on the joint blind estimation of
the pair (h,w) where w is a LN x 1 linear equalizer
satisfying the following condition in the noiseless case:
w7 (h) = [0,..,0,1,0,..,0]. Note that, although writ-
ten as a zero-forcing (ZF) equalization problem, the
actual (noisy) problem does not fully reduces to some

ZF equalizer.

3 The proposed method

Assume in a first step that M is known. Consider

an L x (M + 1) matrix h (channels estimateg and an
LN x 1 vector @ (equalizer estimate). Our algorithm
aims at tuning these channel and equalizer estimates
so that the convolution product between each chan-
nel estimate and the equalizer output matches the ob-
served signals as sketched in fig.1. Mathematically,
this writes:
minimize J(h,&) = E |x, —hX}0 2, @
where X, = [Xp, Xn—1,.» Xn-m] is @ LN X (M+1)
sample matrix. This observation fitting criterion is
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bilinear in the coefficients of 6 = (h,w). It is simi-
lar in spirit to the previously proposed deterministic
maximum likelihood (DML) criterion [9]. The DML
method, in which the linear equalizer is typically not
a free variable (being replaced by a pseudo-inverse of
T(h)), is however subject to ill-convergence and is
computationally demanding as well. This is not the
case here, as will be shown in the following.

3.1 Criterion minima

Assume a noise free (67 = 0) situation. Consider
any solution of the form 6 = (ah,w/a), where w is
some ideal zero-delay equalizer and « is an arbitrary
complex scalar. Clearly, § achieves global minimiza-
tion of our criterion, thus provides a stationary point
of J(), since J() is positive. Conversely, it may be
shown that J = 0 leads to channel equalization and
identification in the absence of noise:

Lemma 3.1 Letz, be the L x 1 residual error process
for some 0 = (h,&), defined as z, = xp — hXlo.
Assume {si} is persistently exciting of order at least
oM. Suppose J(0) = 0, t.e. 2z, = 0 almost surely.
Then 6 = (ch,w/a), where w 1s an ideal zero-delay
equalizer and « is a complex scalar.

Proof If x, = hX.&, we also have from (3)
X, = T(h)S, = T(h)[Xn, .., Xn—ps1]'@

under the persistent excitation condition, the subspace
spanned by the observed vectors X, is found to be

simultaneously 7 (h) and 7 (h). By theorem 2 in [8],

we have h = oh. It follows that s, = o X}&, showing
that &/« is a zero-delay equalizer.0

3.2 Stability of minima

Here, we check the a‘?sence of undesired stable lo-
cal minima. Let @ = (h,&) be any stationary point
(cancelling the first partial derivatives) of J(). The
stability of @ is investigated through the criterion sec-
ond order expansion: Let §6 = (6h,60) be a small
move around 6. Let AJ = J( + 60) — J(6), we find,
up to the second order:

AJ ~ E | 2, — 6hX.io —hX.60 |* —E | 2. 1%,

where 2, is the residual of 0, i.e. (x, —hX!®). It can
be inferred that

Lemma 3.2 0 is a stable minimum if and only if all
components in z, are decorrelated from X?t. Due to
the particular form of z,,, this imples z, = 0.

Due to lack of space, the proof of this lernma will be
detailed in a forthcoming paper. Now we have estab-
lished that a gradient-based algorithm based on the
noise free criterion in (4) always converges to the true
(channels, equalizer) pair, up to an arbitrary scalar
constant.




3.3 Robustness

With respect to noise The presence of additive
noise causes bias in the results, however the simula-
tions indicate that acceptable channel and equalizer
estimates can be obtained from this algorithm under
realistic SNR conditions. Bias removal techniques,
based on some norm-constrained minimization, can
also be adapted to our problem [14].

With respect to model order In practical situ-
ations, the multichannel order (M) is probably not
well defined, especially in the case where the channels
coefficients taper off at the ends. Then, overestima-
tion of M is likely to occur. We stress the robust-
ness of the proposed method with respect to such er-

rors. The proof goes as follows: Let h = th, .., hg]
be the channel candidate, with K > M. As in
the case of correct order estimation, the minimiza-

tion of J(h,&) leads to x, = hX%®, this again gives
span(T (h)) = span(7(h)). As a result the channels
in h admit a K — M order common polynomial factor,

denoted ¢(z), and 7T (h) factors into 7 (h)Q where Q
is the P x (V4 K) Sylvester matrix associated to ¢(z)
{13]. We have

T(h)S,
Sn

T(D)Q[Sn, -, Sn—k-n41' T (h)'&
Q[Sna 0y Sn—K—~N+1]tT(h)t‘:’

and it is clearly seen that such a condition cannot hold
with ¢(z) = 1, unless there exists some recurrence re-
lationship between the successive emitted symbols, a
fact which is not compatible with the persistent exci-
tation assumption. As a result, the only possible solu-
tion of the above equation is ¢(z) = 1 and 7 (h)'@ = I.
This result is checked below in the simulations section.

4 Equalization with non-zero delay

The performances of a linear multichannel equalizer
generally depend on its delay [15]. Hence, it is useful
to control the delay introduced by the equalizer. This
is easily obtained by rewriting the proposed criterion
as : J(hw) = F | z,_¢g — hX!w | where d is a
chosen delay parameter. Note however that in case
of model order overestimation, the actual equalizer’s
delay may not be determined in advance, since the non
zero channel coeflicents estimates in h are subject to
a possible shift. However this problem should not be
very severe in presence of noise.

5 Adaptive algorithm

A possible implementation of the proposed method
which allows full adaptivity in the context of time
varying statistics/channels is as follows, based on a
stochastic gradient approximation. Note that other
recursive least-square based approaches can also be
used.

Y

ot
X, wn,
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PN

hn+1 =

by — A(B, Y, — x,)Y},
Gn — AXht (B, Y, - x,),

(Dn+1
where X is a small stepsize.

6 simulations
We consider the context of L = 2 randomly chosen
channels of length M +1 = 5, given by h' = [-0.089—
0.4895;—-0.340 — 0.0167;0.022 — 0.0695;—0.192 —
0.0315;0.464 — 0.6135], A2 = [0.422 + 0.4677; —0.075 +
0.3205;0.185 — 0.0495; 0.223 + 0.1225; 0.145 — 0.609;],
driven by a white QPSK sequence. Output SNR is
set to 15dB on each of the (normalized) channels. We
choose N = 5 and consider only the zero delay case
(d =0). Fig.2 shows the equalization results in terms
of output mean square error between the transmit-
ted and the recovered symbols, using the linear equal-
izer provided by the algorithm &,,, versus the iteration
number n. Both cases of a correct model order esti-
mation (K = M = 4) and of a severe overestimation
(K = 8) are illustrated.

Fig.3 shows the identification results in terms of

the distance between h, and the true channels, up
to o, where a is defined in lemma 3.1, defined by

| hy/a —h |2 /| h |>. Note that channel identifica-
tion is well achieved despite the additive noise. This
is due to the MSE-like structure of the criterion. Ro-
bustness with respect to the model order error is con-
firmed by both equalization and identification results,
though the obtained performances seem to degrade in
the case K = 8. The rise in the steady-state error is
due to adaptation noise, which can be compensated
for by decreasing the stepsize. This robustness gives
advantage over the methods found in [7,8,4,5].

7 Discussion

We have addressed the problem of blind (adaptive)
estimation of both the channel coefficients and the im-
put in a SIMO context. In the proposed criterion,
the channel estimate and a linear equalizer are inde-
pendant variables to be adjusted so as to match the
observed signal in a least mean square sense. The
minimization of this criterion asymptotically leads the
“true” (channel,equalizer) pair in the absence of noise,
up to some scalar constant, and is robust to possi-
ble model order errors thanks to the particular struc-
ture chosen for the equalizer. A gradient descent im-
plementation was proposed, providing however rather
slow convergence. Further work will include the study
of implementations of the recursive least-squares type,
for example by alternating RLS algorithms on the
equalizer and the channels estimates.
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Figure 1: The joint channels/equalizer estima-
tion setup.
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Abstract

This contribution adresses the problem of optimal
blind linear symbol recovery, using the channel diver-
sity induced by a sensor array or time oversampling.
We present a technique allowing the computation of a
minimum mean-square error (MMSE) equalizer, based
on the optimization of quadratic second-order func-
tions. The proposed technique improves on ezisting
multichannel equalization methods, in that previous
methods generally build on criteria which are optimal
in the sole noise free context. Our criterion also allows
free choice of the delay for the symbol recovery. As a
consequence, MMSE equalization performance can be
enhanced through the use of an optimal delay. To this
end, a performance analysis is conducted in order to
wnvestigate some of the links between the delay and the
symbol estimation accuracy.

1 Introduction

Blind multichannel deconvolution exploiting the
channel diversity induced by sensor arrays and/or time
oversampling has attracted a lot of research efforts in
the recent years. Methods can now be found in the lit-
erature, based on the minimization of various second-
order criteria, which offer promising alternatives to
the previously reported higher-order based techniques.
These methods are basically multichannel batch de-
convolution techniques in which transmitted sequence
or channel coeflicients are recovered through subspace
decompositions of either the received data matrix
(see the so-called deterministic methods [3,5,4]) or
the received data correlation matrix (see the stochas-
tic methods [1,2]), while other interesting approaches
were also studied in [7,8,9,12]. Some methods, per-
forming a channel pre-identification, have to be linked
to an extra equalization stage, thus increasing the
global cost of the reception scheme. In the (nu-
merous) communications applications where low com-
plexity and/or tracking ability is sought, direct on-
line equalization techniques requiring no channel pre-
identification are to be favored. Significant improve-
ments can also be gained in this context from chan-
nel diversity. These improvements concern two main
points : (i) convergence reliability (diversity allows
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the use of second-order unimodal error function for
equalization), and (i) equalization accuracy, using a
simple linear structure since finite-length zero-forcing
equalizers are available in the multichannel context.
However, these existing direct equalization methods
generally suffer from a lack of robustness in the sense
that they build on criteria which are optimal in the
noise free context, but not (or even far from) opti-
mal in the practical noisy situations. This typically
includes the prediction-based methods [7,8] but also,
in a lower extent, the mutually referenced equalizers
(MRE) method in [9]. As another lack of optimal-
ity, most existing on-line multichannel techniques ([9]
being an exception) are unable to exploit the perfor-
mance gain that stems from the choice of a proper
delay for symbol recovery [7,10]. This paper investi-
gates the solutions to these problems. Our contribu-
tion is two-fold: (1) we present a technique, based
on a modification of the criterion initially introduced
in [9], allowing the derivation of a blind linear multi-
channel equalizer, optimal in the MMSE sense. (2) By
this approach, we show that we may improve on the
robustness of the obtained equalizer through a proper
tuning of the reconstruction delay : The criterion is
optimal in the MMSE sense for a given reconstruction
delay, which can be chosen so that the corresponding
MMSE is minimal among all possible delays. Finally,
a theoretical study is conducted, based on the compu-
tation of Cramer-Rao bounds, that provides a guide-
line for the choice of the optimal delay. Notations:
E() statistical expectation; ()* complex conjugation;
()! transposition; () trans-conjugation; | . | Ly-norm
of a complex scalar, vector or matrix.

2 Problem statement

The multichannel model of a digital communication
system relies on the existence of L different channels,

modeled by finite degree linear digital filters Al,.., hL,
driven by the same PAM/QAM sequence s;. Their L

noisy outputs x?, are observed:

M
ah = sn_phl+b, fori=1.L (1)
k=0




We assume throughout the paper that the se-
quences s; and b:,i = 1..L, are mutually uncor-
related. b,i = 1..L being white processes, E |
b, |>= o?. Note that the emitted sequence si is
not required to be white, in contrast with [7,8,10].
In a practical context, the hi’s either represent the

baud-rate sampled versions of a single physical chan-
nel with various sampling phases (time diversity), or
the channel linking the transmitter and the ith sen-
sor on an antenna array (space diversity), see [1,2]
for further details. Here, M denotes the ISI length.
Consider the LN x 1 space-time signal and noise
processes with time window of size N defined by
Xp = [2), 0 Zh_Np1s o @E, o @h_nya]t and Bn =
(BL, . bL _wy1s s D, s BE_nya]fs Let P = M+ N de-
note the number of symbols involved in the expression
of X,,. The following linear model holds

Xn =HSn + Bn (2)

where Sp, = [$n, ..., s(n—P+1)]* and H is the so-called
LN x P Sylvester matrix, defined by

Ry -+ h} O 0 \
E 0
0O --- 0 h(l, hzlw
H= :
Rk .- th 0 -.- 0
: 0
\ 0 ... 0 & hL, /

The identifiability /equalizability conditions of the sin-
gle input/multiple output system above are estab-
lished in {1,6], and can be restated as

e (H1) H has full column rank (LN > P).

3 Blind MMSE Equalization

In the following, it is shown how noise free adap-
tive linear equalizers, i.e. vectors satisfying the ZF
condition, can first be obtained using the method of
mutually referenced filters, and then be exploited to
train a blind MMSE equalizer.

3.1 Derivation of adaptive ZF equalizers

It is seen from (2) that a LN x 1 vector (denoted

2, given by any line of any left-inverse matrix of H
will satisfy the ZF condition up to a delay between 0
and P —1,ie. VFH =10,.,0,1,0,..,0]. The MRE
criterion introduced in [9], provides a useful means to
compute blindly and adaptively such equalizers, in the
noise free case. The main result of [9] can be restated
as follows:

Vi

Lemma 3.1 Consider a set of P linear equalizers
Vo, Va, ..., Vp—1 and adjust them so as to cancel the

173

quadratic function

P-2
ere(VOa ey VP—I) = Z E | Vj+Xn - V_,'-:.1Xn+1 Iz
j=0
under constraint
P

-1
Y IvilP=1
i=0

Then V;, for j = 0.P -1, is a “i-delay” exact ZF
equalizer | i.e. Vj'*'X,, = asp-j, where o is an arbi-
trary constant scalar.

In this result, the information redundancy provided
by several independant equalizers associated with dif-
ferent delays is exploited to build a second-order cri-
terion. However, in the noisy situations, the minimiz-
ers of the MRE criterion are no longer optimal and
the obtained filters {V;} are biased. Fortunately, the
the MRE criterion can be modified so that the new
performance surface gets noise independant. The pro-
posed bias removal technique, inspired from [11], con-
sists in replacing the former unit-norm constraint by a
new quadratic constraint that incorporates the knowl-
edge of the noise covariance matrix structure. The
technique is as follows: Let V = [V, V1t, ., Vi ]t
be the LNP x 1 vector consisting of all the equal-
izers entries. Jimre can be rewritten in a compact
matrix form as Jpmre(V) = VIRV where R is a
sparse LNP x LNP matrix made from sub-blocks
E(Xnt1X;) and E(X,X}). Under the white noise
and noisefmgnal decorrelation assumptions, R splits
into a noise and a signal part as:

R =R, +0iRs (3)

where R, and R, are the matrix forms of the crite-
rion Jy,e in the signal-only case and noise-only case
respectively. Closed-form expression of R, R, and
R, are provided in appendix A. Note that R, has a
non trivial nullspace since Jnre can be cancelled in
the absence of noise while R; has full rank.

Lemma 3.2 Let V" v, .., }‘,”f;]“' be a
LN P x 1 vector minimizing Jyre(V) = VIRV, under

constraint VIRV = 1. Then, for each j, 1/}°pt+X,, =

+ . . . ;
asp—j + Vj"pt B,, ie V}"pt is an unbiased j-delay ZF
equalizer.

Proof It is easily shown using Lagrange multipliers
that VP! satisfies:

RVP - (VPTRVPYR VP =0 (4)

with (V°Pt" RV°Pt) taking the minimal possible value.
From (3), the only solutions to this problem are such

that R,V °P! = 0 which bring us back to the noise free
solutions. Note that this technique do not require the

knowledge of ¢7. O




3.2 Coupling with a MMSE equalizer

Since the newly constrained mutually referenced
equalizers {V,’ *} asymptotically provide ISI free sym-
bols estimates, any of these can be used to train a
MMSE equalizer as in a fully supervised context: Let
the LN x 1 adaptive filter W°P* be obtained through
the minimization of

optt
Jmse(W) =F I W+Xn - VJ Pt Xn—d+j |2 (5)

WeP! is a d-delay MMSE equalizer, provided the noise
contributions in X,, and Xn—d4; are decorrelated, so
that the correct (unbiased) optimum is attained for
WPt Since the noise is assumed to be temporally
and spatially white, this condition is met if d—j > N.
In the following, we provide theoretical hints enlight-
ening the links between the delay and the steady-state
performances of W°P*. A general guideline is provided
for the choice of d.

4 On the Delay for Symbol Recovery

In this section, we investigate analytically the links
between the chosen delay and the minimum achiev-
able output MSE, regardless of the equalization cri-
terion. The study is conducted by means of Cramer-
Rao bounds. We essentially make the assumption that
all transmitted symbols but one, within a temporal
window of size N, are known deterministic quantities.
Though this assumption may appear unrealistic, it not
only greatly simplifies the mathematical developments
but also permits the derivation of tractable and inter-
pretable equations. We assume further that the noise
is white gaussian. Then, at time (fixed) n, the p.d.f.
of a space-time vector X,, writes:

1
f(X,) = Kez:p(—? | Xn —HSn |?)
b
log(f(Xn)) _ 1 .. +
Osn—a - (Ko = 50) s
0 Blog(f(Xs)) _ |hays|?
6s;_d 6sn_d - 0'?

where hyy; denotes the (d+ 1)** column of the chan-
nel convolution matrix #. Now we get the classical
estimation theory result:

Lemma 4.3 Let T;(X,) be any unbiased estimator
(possibly non-linear) of s,_q4, the other symbols being
seen as known deterministic variables. Then, we have

o3

| Basa |12

Due to the unrealistic assumptions made here, the in-
dicated bounds have very limited practical applica-
bility. For instance the obtained cramér-Rao bound
does not account for the possible lack of channel dis-
parity in X which may cause some severe degrada-
tion in the estimation performance. However, for

E | T(Xp) = $n-a |’> CRB(s_0) = (6)
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a relatively “well conditionned” matrix 7, the re-
sults in (6) provide some insight into the shape of
the distribution of performances versus the delay d:
Due to the Sylvester structure in H, its columns are
such that CRB(s,) > ... > CRB(sp_p) = ...
CRB(Sp-n41) < ... < CRB(sn_p41), as long
N > M. This is a channel-independant result giving a
simple guideline which consists in favoring the delays
close to or, if possible, between d = M and d = N — 1
symbol durations in order to improve the estimation
accuracy. The fact that extreme values for the delay
(typically d = 0 or d = P — 1), provide the worst
noise enhancement properties was also confirmed in
our simulations.

5 Implementation and Simulations

A possible implementation of the blind MMSE
equalization technique presented in 3 is based on a
straightforward coupled stochastic gradient descent of
the criteria J,,,e, under the bias removal constraint,
and Jy,se: The ZF equalizers estimates V;,...,Vp_; are
updated according to the constrained cost Jy,,., the
output of one of them V;, is selected as a reference
signal, the MMSE equalizer estimate W being up-
dated according to the steepest descent of J,,5.. Due
to the lack of space the implementation details are
omitted here. A short validation of such a technique
is presented in the following communication context:
L = 2 randomly chosen channels, with degree M = 4
(the channel coefficients are those given in [12]). The
output SNR is 10dB and the symbols s,, are QPSK-
modulated. We take N = 5 as the number of snap-
shots considered altogether. Delay optimization to-
gether with the condition d — j > N naturally sug-
gests j = 0 for ZF equalization delay, and d = 5 for
the MMSE equalization delay (though, strictly speak-
ing, a 4-delay MMSE equalizer would provide better
results).

In fig. 1, we plot a typical learning curve for the
output MSE between the transmitted and equalized
data, using the estimated 5-delay MMSE equalizer,
versus the iteration number. To check the result, the
asymptotic MSE achieved by the true 5-delay MMSE
equalizer is indicated in dashed line. The excess MSE
provided by the adaptive equalizer is due to the adap-
tation noise and can be reduced by decreasing the
stepsize in the gradient algorithms .

In fig. 2, we check the relevance of the theoretical
results in section 3. The Cramer-Rao bounds provided
by expression (6) are plotted for different delays, using
'+’ symbols. For comparison, the minimum achiev-
able MSE with a linear equalizer is indicated, in ’0’.
As expected, the lower bounds provided by the sim-
ple performance analysis in 3 are rather optimistic.
However, the correspondance indicated between delay
and performance is roughly verified, even assuming a
sub-optimal linear structure for equalization.

6 Conclusion

In this contribution, it was shown that asymptot-
ically ideal ZF adaptive equalizers could be obtained




through the minimization of the MRE criterion and
used to train blindly an adaptive MMSE equalizer.
In the presence of additive noise, the MRE criterion
needs be modified to allow the derivation of unbiased
equalizers. In the proposed algorithm, a non-zero de-
lay can be chosen for the MMSE equalizer. A simpli-
fied Cramer-Rao bounds analysis was used as a means
to give practical guidelines for the choice of an optimal
delay. The numerical simulations results match rather
well with the theoretical derivations.
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Appendix A

Rx = E(Xp,X7T), Rix = E(Xn31X). Define A
as the P x P diagonal matrix diag(1,2,2,..,2,1), and
Jp as the P x P matrix with ones on the diagonal
above the main one, and zeroes elsewhere. Then, it is
rather straightforward that

R:A@RX—J;'@RM—JP@R-{X
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where ® is the conventional Kronecker product. We
have in a similar way:

Ry =0}(A®Ip—J§ @ Rig— Jp ® R;)

where B refers to the normalized (unit-variance) white
noise. Ip is the identity matrix of size P. Let
Y, = HS, (noise free observation). The signal-related
matrix writes:

’R,:A@Ry—J}i’@Rly—-Jp®Rl+y
10 . - .
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ABSTRACT

Hidden Markov Models (HMMs) are employed in this pa-

per to describe digital communication channels, and their
parameters are estimated in a blind fashion. General non-
linear channels can be accomodated which are not restricted
to be of the Volterra type. Contrary to standard HMM
parameter estimation techniques, which resort to nonlin-
ear optimization of the likelihood function, the proposed
method is based on a graph theoretic approach. We ex-
ploit the De Bruijn property of the channel’s state transition
graph, and develop computationally efficient blind estima-
tion procedures involving shortest path searches. We show
identifiability of the associated graph problem and discuss
convergence issues. Finally, some illustrative simulations
are presented.

1. INTRODUCTION

Most of the existing literature on channel estimation and
equalization has focused on linear chanmels which can be
described by an impulse response of finite length. However,
in some applications the linearity assumption may not be
valid, mainly due to nonlinear amplifiers in the transmitters
(or repeaters), as for example in satellite channels [3], [5],
[6].

Following the linear channel paradigm, a common
method of describing nonlinear channels is by using trun-
cated Volterra models [1]. Although Volterra series provide
a general framework for treating nonlinear systems, they
may not be perfectly suited for communication channels, as
they do not take into account the finite alphabet nature of
the input. Moreover, there is no clear indication of what
the minimum Volterra order is, that would provide a satis-
factory approximation.

In this paper we regard the channel as a general nonlin-
ear mapping with no particular parametrizable form. The
instrumental observation however, is that the input (and
hence the channel state) can take a finite mumber of different
values. Thus, the channel estimation problem is equivalent
to identifying the mapping from each state to the corre-
sponding channel output.

This approach to the channel estimation problem natu-
rally leads to the theory of finite state machines and HMMs.
In fact, general maximum likelihood (ML) techniques for
blindly estimating the parameters of HMMs are well known
(8], and have been applied in the context of communication
channels [2], [4], [10]. These approaches however, suffer
from increased computational complexity, and convergence
probl[er]ns related to the local minima of the likelihood func-
tion [8].

0-8186-7576-4/96 $5.00 © 1996 IEEE

In this paper, we employ graph theoretic techniques in
connection with clustering methods to avoid the likelihood
maximization procedure. The proposed method is compu-
tationally efficient and a unique solution is guaranteed un-
der some identifiability conditions.

2. PROBLEM STATEMENT

Let the received data y(n), n = 0,..., N — 1 be generated
by the communication system shown in Fig. 1, i.e.,

y(n) = h[w(n)] + v(n) ¢y

where w(n):-A-['w(n), w(n—1),...,w(n~g)]” and the trans-
mitted sequence w(n) consists of i.i.d., equiprobable num-
bers taking values from a finite alphabet set A =
{a1,62,...aq} of size . h[-]is a linear or nonlinear channel
of memory order g and v(n) is zero mean, white, additive,
Gaussian noise.

The channel A[] does not have to obey a certain para-
metric form; however, it is not allowed to map distinct state
vectors to identical outputs, as formalized in the following
assumption:

(AS1) For every w; # wz, the channel response is A[w,] 5
h[W2].

Under this assumption, the goal of this paper is to iden-
tify the channel mapping h[w] for every possible state
w € A7 Once the identification step is completed, a ML
input estimation procedure can be used (Viterbi algorithm)
to recover the input.

The proposed identification procedure consists of two
steps: A clustering algorithm is employed first to estimate
the a?t! different values the (noiseless) channel output h[-]
can take. Then, graph-theoretic techniques are developed
to associate each of the cluster centers with the appropriate
state vector w € 47!,

It should be pointed out at this point that the channel
is uniquely identifiable only up to a permutation of the in-
put alphabet values. For example, in the BPSK case A =
{-1,41} which is indistinguishable from A = {41, -1}
with appropriately permuted response h[]. In linear chan-
nels, this inherent ambiguity manifests itself as a scaling
ambiguity.

3. CLUSTERING

Clustering techniques have been employed in descriptions
of communication channels when training data are avail-
able [9]. They are used to provide the channel’s (noiseless)
response, associated with each HMM state. In the case of
negligible additive noise, the clustering step becomes trivial
and can be solved by inspection of the received data y(n).




v(n)
y(n)

w(n)
— Al

Figure 1. Nonlinear Communication Channel

The most commonly used clustering method is the K-
means algorithm (e.g., [11]), which adjusts the cluster cen-

troids ki, k = 1,...,a% and associates each data point
y(n) with a cluster membership set I, such that the fol-
lowing minimization problem is solved:

altl

min Y Y fy(n) = Bil® (2)

Tekk 21 y(m)el,

The algorithm proceeds in an alternating fashion, optimiz-

ing in turn the centroids hx and the cluster assignments
Ii.

4. IDENTIFYING THE MARKOV MODEL

Once the centroids and cluster assignments have been de-
termined by the K-means algorithm, the state transition
probabilities need to be estimated to complete the Markov
Model description of the channel. For general HMMs, the
transition probabilities are typically estimated by maximiz-
ing the likelihood of the observed sequence [8]. In the cur-
rent problem however, we should exploit the a priori infor-
mation that is available about the channel and avoid the
costly maximization step. For every channel state there are
only « possible transitions, since the new input w(n + 1)
can only take o values. Moreover, these transitions are
equiprobable.

Let I(y(n)) € {1,...,a%*'} be the cluster membership
function obtained from the K-means algorithm (i.e., the
nearest neighbor cluster assignment for each data point
y(n)). We propose to replace the sequence y(n) by I(y(n))
and identify the transitions from a state ko by recording all
the transitions form ko in that sequence. In the absence of
noise, only the allowable transitions will be present, while
in the noisy case, the a most frequently recorded transitions
will correspond to the allowable ones. Indeed, if the clusters
are separated so that the probability of misclassification in
I(y(n)) is small (see also (AS1}), then the o most frequently
recorded transitions should be distinguishable from the oc-
casional spurious transitions. This simple procedure seems
able to complete the graph describing the HMM in a com-
putationally efficient way. However, it cannot provide the
association between each state k € {1,...,a%"'} and the
corresponding a-ary vector wi € A%!. In other words,
although the noiseless channel outputs hx have been esti-
mated for every state k, and the transition graph has been
completed, the channel mapping h[wx] has not been identi-
fied yet, because the correspondence k <> wi has not been
obtained. This association is crucial in using the HMM to
decode the input and needs to be recovered.

The problem can be equivalently posed as labeling each
state k € {1,...,a%9'}, using a ¢ + 1 length vector
Wi = [wk,,wky, ..., Wk, ,,] of a-ary symbols wk, € A,
i=1,...9+1, in a way that is consistent with the channel
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operatrions. The main contribution of our work is in em-
ploying graph-theoretic tools and developing an algorithm
to solve this association problem.

5. IDENTIFIABILITY

It is clear that for a general finite state model, there is
a large number of different labelings possible, and further
information is required to complete that task. HMMs de-
scribing communication channels however, are of a special
form and admit a unique labeling (under certain inher-
ent ambiguities) as shown next. The key observation is
that for a communication channel graph, a state transi-
tion from wx = [wk,, Wk,,..., Wkyy,] to Wi is valid only
if wi = [wky,...,wk,y,, @], ® € A. In other words, the
channel acts as a shift register, at each transition shifting
Wy, - -+, Whyy, and incorporating the new data point .

Graphs ci’escribing such systems are called De Bruijn
graphs [7], and have been extensively studied in the area
of computer science. They find applications in many di-
verse problems from coding theory to routing in computer
networks. However, to the best of our knowledge, they have
not been studied from an identifiability /labeling viewpoint.
The main identifiability result developed in this paper is
summarized in the following proposition.

Proposition: Every De Bruijn graph admits a unique la-
beling of its states, within a permutation of the alphabet
letters. n|

The proof is constructive and actually provides an algo-
rithm to implement the association (labeling) procedure.
Before developing the proof, it will be useful to note that
every De Bruijn graph has exactly a nodes with self-loops.
These correspond to the states Wa, = [Way, Way,-- ., Way ),
Way = [Wagy Wagy -y Was)y -+ oy Wan = [Wag, Way, -
and can be identified as the a non-zero entries in the diag-
onal of the state transition matrix. Since permutations of
those o labels simply corresponds to permutations of the in-
put alphabet symbols, we can assume without loss of gener-
ality that wa,,Wa,,..., W, are given; we call those nodes
the roots of the graph. Also, for every node wi, we call the
nodes that are accessible with one transition, the children
of wi. With this terminology established, the proposition’s
proof is based on the following lemma.

<3 Wags s

Lemma: If the following information is given about a De
Bruijn graph:

i) the roots’ labels,

i1) the label of an arbitrary node,

then the labels of that node’s children are unique. o
Proof: Consider an arbitrary node wi = [wk,,Wk,,- ..,
Wk, 4, ), and one of its children wi = [wky,. .., Wiy, D]

Let us assume that there are two different valid labelings
for wi, one corresponding (without loss of generality) to
W = a1, and one to W # a;. Let us compute the shortest
path from w; to the roots Wa,, Wa,, ..., Wa, (i.€., the min-
imum number of transitions or shifts required). If @ = ai,
then clearly at most g shifts are needed to arrive at wq,,
while g 4+ 1 shifts are needed to arrive at any of the other

roots Wa,,...,Wa,. If however & # a1, ¢ + 1 shifts are
needed to arrive at wgo, which is a contradiction. Hence,
both labelings cannot be valid. ]

The proof of the lemma indicates a labeling procedure;
namely starting by arbitrarily labeling the roots w,,,
Wag, ..., Wa,, and proceeding by systematically visiting the
remaining nodes and labeling them according to the short-
est path test. The details of the algorithm are explained




next.

6. PROPOSED ALGORITHM

The proposed algorithm consists of four steps, namely clus-
tering, transition matrix estimation, labeling and decoding:

Step 1: (Clustering) Obtain the a?"! cluster centers hx
and cluster membership function I(y(n)) from (2), using
the K-means algorithm.

Step 2: (Transition matrix) For every state ko, obtain its
children as the o most frequent transitions from kg in the
sequence I(y(n)).
Step 3: (Labeling)
Initialization:
(i) Mark all nodes as not_visited
(i1) Find the o non-zero entries in the diagonal of
the transition matrix (roots), and label them ar-

bitrarily as Wa,, Wa,,...,Wa,.
(iif) Put the roots in the to_visit queue.
Recursion:

while to_visit queue is non-empty,
(i) Get first node out of the queue
(1) If not_visited then
(iia) Get its a children
(iib) Put them in the to_visit queue
(iic) Mark the node as visited
(iid) Compute the shortest path between each
child and the « roots.
(iie) Label each child using the root corresponding
to the smallest shortest path value.

Step 4: Employ the Viterbi algorithm to recover the trans-
mitted symbols.

7. DISCUSSION

Some remarks on the proposed algorithm are now in order:

1. There are many computationally efficient algorithms
to compute the shortest path from one node to every other
node in the graph (e.g., Dijkstra’s algorithm [7]). Their
complexity is on the order of QlogQ, where @ = %%,
Hence, the complexity of the proposed labeling scheme is
aQ®logQ.

2. The proposed method is suboptimal when compared
with the maximum Lkelihood (ML) solution provided by
the Baum-Welch algorithm. However, its computational
requirements and convergence properties may be better.
In medium to high SNR, clustering methods are known to
perform satisfactorily, and may suffer less than ML meth-
ods from local minima problems. If further computational
power is available, the results from the proposed method
can be used as initial conditions for the Baum-Welch algo-
rithm, to improve the estimation accuracy.

3. As a final remark, it should be noted that the ML
methods suffer from the same identifiability problem (i.e.,
ambiguity with respect to permutations of the alphabet
symbols), which is inherent to the blind problem at hand.

8. SIMULATIONS

In this section, some simulations results are presented in or-
der to evaluate the performance of the proposed method. In
all the simulations, the data were generated by filtering the
transmitted sequence (N=800), through a linear channel of
order g = 2 with H(z) = 14+(140.5¢)2" ' +(1~0.5¢)2™2, and
passing the output through a memoryless nonlinear model
of a ‘travelling wave tube amplifier’ [6] which is employed in
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satellite communications. The model parameters used were
the ones proposed in [6] (see Fig. 5 in [6]).

The transmitted and received BPSK symbols for the non-
linear channel are plotted respectively in Fig. 2a and 2b.
Additive Gaussian noise of SNR = 12 dB was added. The
output of the clustering algorithm is shown in Fig. 2c,
where each data point is assigned to one of eight possible
clusters (Original cluster centers, Estimated cluster centers
and received data are depicted by o,x,- respectively). Fi-
nally, in Fig. 2d the output of the Viterbi algorithm is
shown where only one error has occurred. Fig. 3 also de-
picts the performance of the Viterbi decoder by showing
the original and estimated state sequence (Fig. 3a and 3b)
as well as the state error sequence (Fig. 3c). Only one
excursion from the correct state sequence was observed in
this data sequence. Fig. 4 shows the magnitude of the
estimation error,

D h(we) = B 3)

experienced by the B-W algorithm at each iteration. In Fig.
4b the results from the proposed method were used as ini-
tial conditions, while in Fig. 4a the initial conditions were
arbitrarily chosen close to zero according to the suggestions
of [10]. Notice the difference in the number of iterations
needed for convergence when good initial conditions are pro-
vided. Results from 100 Monte Carlo runs (Probability of
error versus SNR) of the proposed method (solid line) and
the Baum-Welch algorithm (dashed line) with initial con-
ditions from the proposed method are shown in Fig. 5. As
expected, the Baum-Welch algorithm is slightly superior to
the proposed method when properly initialized.
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BLIND EQUALIZATION OF TIME-VARYING CHANNELS:
A DETERMINISTIC MULTICHANNEL APPROACH
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ABSTRACT

Blind equalization of rapidly changing multipath chan-
nels is important for mobile communications, and is ad-
dressed here by expanding the time-varying channel over
a basis. Time-variation offers diversity and in contrast to
time-invariant channels, blind equalization of time-varying
channels becomes possible under mild conditions provided
that the expansion components can be separated. Multi-
channel data are needed for the challenging non-separable
case where it is shown that unique vector FIR equalizers
exist under certain channel co-primeness conditions. Apart
from persistence of excitation, no extra restriction is im-
posed on the input. Order selection methods and blind
equalizers are derived directly from the output data. Pre-
liminary simulations are also presented.

1. MOTIVATION AND MODELING

In wireless communications, multipath environments may
change with time as the mobile communicators move. If
the resulting time-varying (T'V) channels exhibit variations
which are too rapid for an adaptive algorithm to track, ex-
plicit modeling of the variation is well motivated.

Let the discrete-time data z(n), n =0,...N —1, be

z(n) =Y h(n;l)s(n —1) + v(n), (1)

where the inaccessible input (or sourceg s(n) is allowed to
be deterministic or random (white or colored} and indepen-
dent of the AWGN v(n). The TV impulse response depends
explicitly on time n, and we model it using a basis expan-
sion. Depending on whether the basis modulates the input

or the channel, we model 7z(n, 1) respectively as (see also
Figs. 1 and 2):

Q
D ha(l) by(n =1y .

M1l: A1) = (2)
q=1
. Q

M2:  h(ml) = Y he(l) by(n) . 3)

Expansion coefficients kq(hq) are time-invariant (TT), while
the known basis sequences by(b,) capture the time-variation
and, depending on the application, are chosen a priori as
e.g., polynomials, complex exponentials, or, wavelets. To
allow for orders that vary with time or lag we define L =
maXn L, and @ = max;@;. Basis expansions for non-blind
TV modeling were reported in [2].

0-8186-7576-4/96 $5.00 © 1996 IEEE
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Using single- or multi-channel output data only, we first
recast the blind TV equalization as a blind T source separa-
tion problem (Section 2). Structured time variations in (2)
and (3) offer what we term channel diversity and degrees of
freedom which render the blind TV equalization well-posed
without use of higher-order statistics {8], or, restrictive as-
sumptions on the input (e.g., whiteness [7]). In Section 3,

we consider M-channel data x'(n) := [z()(n)...z(M)(n)]

with each (™) (n) obeying (1) and (2) of model M1. The
resulting vector model is:

Q

JOEDY

q=1

L
D hybg(n ~Ds(n — | +v'(n), (4)

=0

where prime stands for transpose, lower (upper) bold is used
for vector (matrices), and the M x1 vectors h, and v are de-
fined similar to x. We establish that M x 1 FIR zero-forcing

(or perfect in the absence of noise) equalizers, {ggd)(k)} Ko
exist, so that within a delay d € [0, L + K] (which is non
identifiable in the blind case) they yield:

K
Y X (k) gk) = sy(n—d), ¢=1,...,Q, (5)

where s¢(n—d) := bq(n—d)s(l:z—d) denotes the deconvolved
input modulated by the gth basis.” Determination of Q and
L are addressed, and linear equation based methods to es-

timate ggd)(k) directly from output data are also developed
in Section 3.

Model M2 was justified based on the mobile kinematics
in [8, 7] and can be related to M1 via: by(n) = bq(lw\z/[— 0,
V1€ [0,L]. However, as M2 is more general than M1, it
requires separate treatment and direct blind equalizers are
derived in Section 4 (see also [3] for alternative solutions).

The ideas herein are important generalizations of the TI
results in [6, 4, 9, 5, 1] to TV channels. Relative to [7],
the present approach allows for deterministic inputs, re-
laxes identifiability conditions, and achieves the same per-
formance with less data.

2. CHANNEL DIVERSITY

Figs. 1and 2 illustrate that the TV-SISO models of (2) and
(3) can be viewed as TI-MIMO models, if the {:1”:.1(11,)}(?=1
components can be obtained. For example, if in Fig. 2 the
£4(n) components can be separated in the time-, frequency-
or, cyclic-domain, the z¢(n) = b7 (n)Z,(n) outputs can be
recovered by demodulating with the known bases. Blind
equalization can then be achieved using existing multichan-
nel approaches (e.g., [4, 9]). Hence, time-variation (not
necessarily that arising due to fractional sampling) offers




diversity which renders blind equalization of TV channels
easier than that of TI channels when separation is achiev-
able. The latter is possible if for example hq(n) channels
are low-pass and by(n) are band-pass with center frequen-
cies far apart from each other. Intuitively speaking, a TV
channel offers us “different views for each time point n,”
and hence the term channel diversity.

Subsequently, we focus on the more challenging non-
separable case which requires multichannel data .'c("')(n),
m € [1,M], n € [O,N - 1]. Multichannel data become
available either with multiple antennas (see e.g., [4], [3]),
or, by oversampling the continuous counterpart of {1

To illustrate the latter, consider the (baseband)
continuous-time data: zc(t) = Y, 8()he(t;t — IT), where
T is the symbol period. With oversampling rate M/T, we
obtain: z(n) = zc(t)|t=nr/mr = Y, s()k(n;n — IM), and
upon defining the sub-processes z(”‘)(n) i=z(nM+m-1),
we find: z(™(n) = S s(l)h("')(n; n=0form=1,..., M.
Oversampling creates multiple channels but in contrast to
the TI case, z(n) is not necessarily cyclostationary and

2{™(n) is not necessarily stationary. Our results reveal
that channel time variation (not necessarily periodic) may
be sufficient to deal with blind problems.

ébl (n)

2(n) : s &b,

1 z(n)
gbo(n)

Figure 1. TV - SISO Channel Model M1

5:1 (n)

h1 (n)

ig(n)

hq(n)

3. MODEL M1: BLIND EQUALIZATION
Let sy (n) := [bg(n)s(n)...bg(n — L — K)s(n— L ~ K)] and
define for each ¢ € [1, Q] the (L + K + 1) x M(K +1) block
Toephitz matrix

ht,(0) o'
Hy= | WD) .. BI-K)
v Bi(D)

Consider (4) in the noise-free case and form the (N — K) x
M(K +1) block Hankel data matrix

x'(N —1) x'(N -1 - K)

X:= =S, H, (6)

x' (:K ) X'QO)

where the (N — K) x Q(L + K +1) modulated input matrix
Ss amtthe Q(L+K +1) x M(K +1) channel matrix H are
given by

s{(N —1) sh(N —1) H;

Sy = , H:=

8 (K) si(K) Ho
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We assume the following:

(M1.1)N — K > M(K +1), which is satisfied by collecting
sufficient data;

(M1.2.1)H is at least fat; i.e., (M, L, Q, K) obey

ME+1)2QL+K+1). )

M1.2.2)H is square; i.e., (7) holds as equality. To satisfy

7), a minimum Mpmin = Q + 1 channels are required with
a minimum equalizer order Kmin = QL —1 (in the TI case,
Mpin=2and Kpin=L-1 H? ,}P])

(M1.3)H is full rank; i.e., rank(H) = Q(L + K + 1) which
implies that transfer functions {H™(2), ¢ €[1,Q), m €
[1, M]} are co-prime. Note that {H‘(,:")(z)}%=1 may have
common zeros provided that for some g2 # ¢1 those are not
also zeros of H{™(2).

(M1.4)bases by(n) are sufficiently varying and s(n) is per-
sistently exciting (p.e.) of sufficient order to assure that
rank(Ss) = Q(L + K + 1). If modulated inputs {.‘xq(n)}gL1
are linearly independent (sufficiently distinct modes), then
S, is full rank. Note that relative to the TI case, p.e. con-
ditions on s(n) are relaxed by the modulating bases. We
stress that s(n) can be either random or deterministic.

3.1. Order determination

Under (M1.1)-(M1.4), matrix X is full rank Q(L+ K +1).
With K3 > K> denoting known upper bounds on K, cor-
responding matrices X, X2, will have rank(f(;) =Q(L+

K+ 1), i = 1,2. It is thus possible to select the orders L
and @ using:

rank(X;) — rank(X2)
K- K,

With Q, L available, K is chosen to satisfy (7) for a given
M>Q+1.

3.2. Existence and uniqueness

Under (M1.2.1) and (M1.3), we infer from X = S,H,
that a unique linear FIR equalizer exists to yield GX = Sp.
Matrix G is the pseudo-inverse H' which under (M1.2.2)

becomes H™!, Because (7) is not satisfied with M = 1, it
follows that blind separation and equalization of TV chan-
nels is impossible in the SISO case under (M1.1)-(M1.4).
The more channels (Mmin = Q+1) required relative to the

TI case is the price paid for our ability to equalize (and thus
invert) FIR TV channels with linear FIR equalizers.

3.3. Direct blind equalizers

Blind equalizers exist and are urique but in order to find
them we first set n = N —1,... K in (5) and collect equa-
tions to obtain

ngd) = sf,d) = ﬁf,d) RO

_ rank(X,)
Q

Q= , L — (K1 41).

®

where g = (g (0)...8Y (K)), &{? = [bo(N -1 -
d)s(N —1—d)...by(K — d)s(K — d)]', B{Y := diag[be(N —
1-d)...by(K —d)], and 8¥ := [s(N —1—d)...s(K —d)]".
We use Matlab’s notation X(41 : 12, :) to denote a submatrix
of X formed by the i; through #2 rows and all columns of

X. Next we define

Xo4:=X(d+1:N~K,:), Xy =X(1:N-K-d,:), (9)
and BO? .= BP(d+1: N-K,d+1: N-K), B :=
BP(1:N-K-d,1: N-K-4d).




From (8) and (9) it follows that

Xo,4 q(i)
X4 g‘;;)

= B?Ps™@+1:N-K),

BY s91:N-K-d). (10
We note that s®(d +1: N - K)y=s91:N-K- d),
which allows us to eliminate the input dependence from the
equations in (10) and obtain the cross-relation:

Bg‘;) Xo,d gfﬁ) = Bg‘;’d) X4 gf,‘;') . (11)
The pair of equalizers (gf;j), q';)) will be identifiable (up to

a scale) as the eigenvector corresponding to the minimum

eigenvalue of ng:gg in

(0,d)
q1,92

0,d)

gy
() = [Bf;;)xo,d —Bg‘}"’)xd] [ ) ] =0,
gq2

(12)
provided that the nullity V(Xéf,’:g) = 1. It turns out
that under (M1.2.2), (M1.3), the latter holds for the
minimum- and maximum-delay equalizers corresponding to
(0,d) = (0, L+ K), provided that rank(S;) = 2Q L+K+1).
Under (M1.1)-(M1.4), equalizers corresponding to all
possible delays d € [0,L + K] and q1,¢2 € [1,Q] can be
found simultaneously; e.g., withd = L+ K, ¢1 = 1, and
g2 =1...Q, we obtain: .

B£L+K)X0,L+x —B§°’“K)XL+K Y

Bg+K)XD,L+K 0 "BSO’L+K)XL+K

g

g(QL:}-K)

To recover s(n — d) from the gf;’) equalizer’s output,
we simply demodulate with b;*(n — d) to obtain b;*(n —
d)sg(n — d) = s(n — d). For each n, it suffices to have
bgo(n) # 0 for at least one go € [1,Q]. If more than one
basis are non-zero, we may align and average the corre-
sponding equalizer outputs.

With the input available, one may readily obtain chan-
nel estimates (if so desired) by solving (4) using standard
regression techniques (see e.g., [2]).

X =0.

(13)

b (n)
Fa(n) a(n)
© N é')—é—»"‘")
bo(n) z(n)
Fo(n) o)

Figure 2. TV - SISO Channel Model M2
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4. MODEL M2: BLIND EQUALIZATION

The counterpart of (4) for the model M2 of (3) is given by
(see also Fig. 2)

Q L
x(n)=)" [Z B (1)bg(n)s(n ~ 1)] +¥'(n),  (14)

q=1 Li=0

but instead of (5), we form the N x M matrix X = §,H,
as follows [3]:

x'(N-1) 51 (N -1) §Q(N—1) H,
x'(0) 5! (0) 5,,(0) H,
(15)

The entries in the N x Q(L + 1) input matrix Sy and the
Q(L +1) x M channel matrix H are given by:

s(n) h,(0)
8q(n) := bg(n) : » He:=
s(n - L) ho(L)
Assumptions (M1.1)-(M1.4) are replaced by:
M2.1)N > M;
M2.2)triplet (M, L, Q) obeys:

M2 Q(L+1),

which compared to (7) requires more channels;
(M2.3)rank(H) = Q(L +1);
(M2.4)rank(S,) = Q(L + 1).

Under (M2.1)-(M2.4), we have rank(X) = Q(L + 1).
If L is a known upper bound on L, then order L can be
obtained as [rank(X)/Q] — 1, but Q must be known.

With G = HT, (M2.1)-(M2.3) guarantee that unique
linear FIR equalizers exist to recover S, from (15). If (16)
holds as equality, then G = H™?,

To derive blind equalizers directly from the data %(n),
we follow the notation of Section 3 and start from the zero-
forcing condition: x'(n) @ = 3g(n) := bg(n)s(n—d), which
forn=N—-1,...,0, leags to the matrix form

(16)

Xg? = & .= B, s?, (17)
where By := diag[bg(N — 1)...5¢(0)] and &% := [s(N —
1—d)...s(—d)]'. When compared to (5), the equalizers for
model M2 have order K = 0. Defining Xo,4 and Xq4 as
in (9) with K = 0, and P.Ef"’), Bgd) accordingly, we can
eliminate 5(¥) from (17) and arrive at the cross-relation:

(18)

Based 01;1&18) and selecting M = Q(L+1) in (16), the (0, L)
pair or equalizers can be recovered by solving for the
minimum eigenvalues of equations similar to (12) or (13);
see also [3] for M > Q(L + 1) with ¢; = ¢;. In addition fo
(16), models M1 and M2 have different input matrices (S»
and S) with correspondingly different decompositions:

s'(N = 1)[B1(N —1)...Bo(N —1)]

B Xoe gl = BYY Xogld

Sy

$'(K)[B1(K)... Bo(K)]
[B:1S...BoS] .

Se

ii




Further research is required to characterize and compare
p.e. requirements in terms of the spectrum of s(n) and
linear independence conditions among the basis sequences.
Additional topics include development of adaptive algo-
rithms, model validation studies, and especially for model
M2, order and basis selection criteria.

Although noise is included in our simulations, the zero-
forcing equalizers were derived in the noise-free case. Argu-
ing as in [1], it follows that the minimum norm solution in
(12), (13), or, (18), minimizes the noise power at the equal-
izer output. Future work will include noise explicitly using
the linear prediction framework along the lines of [5].

5. SIMULATIONS

We generated N = 300 QPSK samples and with @ = 2 basis
sequences, bi(n) = 1, b2(n3 = exp(j27n/50), we formed
data z(n) according to models M1 and M2. Outputs of
complex channels S(\)Zder L = 3) were received by M = Q +
1 = 3 antennas for M1, and M = Q(L+1) = 8 for M2. One
realization of the eye diagrams before and after equalization
are shown in Fig. 3 at SNR=40dB for M1. Corresponding
diagrams for M2 at SNR=25dB are depicted in Fig. 4.
The equalizer order for M1 was K = QL —1 =5, and
its coefficients were obtained by solving (12) with @1 = 1,
g2 =2, and d = L + K = 8. For M2, equalizer coefficients
(K = 0) were found via (18) with g1 = 1, g2 = 2, and
d = L = 3. To illustrate the importance of TV modeling,
we show in Fig. 5 how the TI equalizers obtained from 19
perform on the data of Figs. 3 and 4. RMS performance of
the errors s(n) — §(n) vs. SNR is plotted in Fig. 6 for M1
and M2 based on N = 150 samples and 100 Monte Carlo
runs. M2 was less sensitive to noise than M1 which also
appeared less robust to basis mismatch and p.e. conditions.
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Abstract

Afferent, whole nerve signals recorded using an im-
planted nerve-cuff electrode were analyzed using three
detectors based on the Ist, 2nd and 3rd order statistical
properties of the signals. Results based on standard
Rectified, Bin-Integrated (1st order statistical) processing
are compared with two algorithms based upon a Singular
Value Decomposition (SVD) of the signal’s 2nd and 3rd
order correlation (cumulant) matrices. Due to the very
low signal levels obtainable from nerve-cuff electrodes
and the high levels of interference from adjacent muscles,
the overall signal-to-noise ratio (SNR) is very poor. In
addition, the noise level is non-stationary. The inherent
properties of the 3rd order statistics of these signals yield
a detector that performs better than the other two.

1. Introduction

It has been known for more than 100 years that animal
muscle tissue can be made to contract through application
of electrical current. More recently, this has been applied
in the development of Functional Electrical Stimulation
(FES) systems, with the goal of restoring lost motor func-
tion in paralyzed individuals. More than 30 years of FES
development have lead to the now generally accepted con-
clusion that, in order to reduce muscle fatigue and
increase reliability, closed-loop systems, in which some
sort of “feedback” information is used to control the
stimulator’s parameters, yield better results than simple
open-loop systems. In restoring muscle function via FES,
the goal is to emulate, as best possible, the body’s lost
natural functionality. Given the choice of using artificial
sensors (goniometers, strain-gauges, accelerometers, etc.),
versus utilizing the subject’s still intact sensory system,
the latter is likely to provide us with the closest emulation
of the body’s natural control system. In order for the
body’s natural sensors to be used effectively, the level of
information obtained from them should be comparable to
that obtainable from artificial sensors. This requires a
reliable, stable, implantable transducer which is able to
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record the sensory signals (known as “afferent” nerve sig-
nals) being passed along the body’s nerve fibers, from
local touch receptors, to the brain. The only appropriate
such device presently suitable for use in humans (where
nerve damage must be avoided) is the nerve-cuff
electrode. Such cuffs are typically constructed from a
silicone insulating tube, in which 3 non-insulated rings of
stainless-steel or platinum wire act as electrodes. The
cuff, which is slit longitudinally, is opened, placed around
the nerve, and sutured closed. Lead wires connecting to
the ring electrodes are routed to an appropriate exit site
and through the skin, where they are attached to an
external connector. For our purposes, these electrodes are
connected to a special high-gain (110,000x), low-noise
amplifier. The resulting amplified nerve signal is
commonly referred to as the Electroneurogram (ENG).
We have constructed a prosthetic device utilizing this
ENG signal (a “neuralprosthetic”) in which a custom
designed DSP-based system controls an 8-channel FES
stimulator. The entire device is small enough to be easily
born by the subject, and uses standard rechargeable
batteries. Natural sensory information can be applied to a
variety of FES tasks. We have primarily been concerned
with two: Hand Grasp Restoration in Tetraplegics, and
Hemiplegic Drop-foot Correction. Tetraplegic subjects,
who have limited use of their arms, are typically unable to
firmly grasp objects. Through stimulation of the muscles
in the hand and forearm, simple grasp functions can be
restored, using the processed nerve signal as a feedback
signal indicating when, due to insufficient stimulation,
the grasped object begins to “slip”. Subjects suffering
from a “drop-foot” are unable to fully activate the muscles
which rotate the foot up/down. Thus, because they can not
achieve adequate toe clearance, they are unable to walk
normally. Stimulation of these muscles can improve such
subject’s gait, provided it occurs at the correct time in the
gait cycle. Timing has, traditionally, been determined via
a mechanical switch placed in the subject’s shoe, which
turns stimulation off upon closure (heel-contact) and on
upon opening (heel-lift). We have previously shown that
the nerve signal recorded by nerve-cuff electrodes can be
used as a sort of “natural” heel-contact switch, [2]. In




both applications, the fundamental problem is the reliable
detection of the presence of nerve signal activity in
background noise. Essentially then, the problem reduces
to one of pure endpoint or transition detection in the drop-
foot application.

2. Considerations Specific to this Problem

There are certain aspects of the present problem (in the
use of human nerve signals) that complicate detection:

e The noise is some non-deterministic combination of
tonic nerve firing, electrode thermal noise, and amplifier
1/f noise. Although, in the strictest sense, due to the pres-
ence of background (tonic) merve firing, this isn’t pure
noise, in practice, it is dominated by the thermal and 1/ f
components of the electrodes and amplifier. In order to
fully activate the paralyzed muscles using FES, it is often
necessary to apply stimulation voltage pulses in excess of
140V to the skin’s surface. These pulses (typically under
300msec in duration) propagate through the body (acting
as a volume conductor) and induce large stimulation
artifact impulses in the recorded nerve signal. Also, the
Electromyographic (EMG) signal from adjacent muscles,
either naturally occurring though voluntary activation, or
stimulation induced, acts as a high level noise source. In
addition, external EMF sources (typically mains power)
are often of sufficient intensity to induce large noise
potentials. The nerve signal amplitudes typically recorded
are in the 1-10 pVolt range for common sensory stimuli.
Therefore, the initial SNR of these raw nerve signals is
often as low as -60dB! Fortunately, it is known that the
majority of nerve signal information is confined to a
narrow frequency band, from 1.0 to 3.0kHz. Therefore, an
important first step in the detection process is the
application of a simple (non-adaptive) bandpass filter.
This filter, combined with other processing (windowing,
adaptive thresholding, etc.) yields nerve signals with
typical SNRs in the range from 0 to +3dB.

e The nerve signals recorded by cuff-electrodes are
dominated by the activity from what are termed fast
adapting sensory receptors. These receptors respond,
primarily, to the 1st derivative (i.e. velocity) of applied
force. Consequently, during a period of activity, defined
by the application of a mechanical stimulus to the skin
within the nerve’s innervation area, only the onset and
offset of contact initiate detectably increased nerve
activity. Thus, activity occurs in short bursts where it is
usually not possible to distinguish between force
application and force removal. The practical implication
of this fact for the use of afferent nerve activity in a drop-
foot correction system, is a contact onset/offset ambiguity
that must be resolved by other means.

o All methods we have tried to-date rely upon a single
variable test against a fixed threshold. When the value of
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the processed ENG signal is below the threshold level, the
null hypothesis Ho is true. and the present state (gait
phase) is unchanged. Upon exceeding the threshold, the
alternative hypothesis, Hi, is indicated. and the present
state is toggled (i.e., an edge occurred). Of particular
significance is the constraint that the number of False
Positives (FPs). or erroneous edge detections be,
essentially, zero. The consequences of an FP are that the
stimulator will be erroneously deactivated while the leg is
still in motion, sufficient toe clearance will not be
maintained, and the subject may fall. Thus, the detection
threshold must be set sufficiently high such that the FP
percentage is low. Conversely, if the threshold is too high,
resulting in missed detections. the stimulator will not be
turned off during the stance (standing) phase, the
subject’s muscles will tire rapidly and. again, the subject
may fall. Thus, ideally, the processed ENG signal, as the
input to the threshold detector. should have a very high
SNR (i.e. the signal amplitude during transitions should
be high, while the background level during constant force
presence/absence should be close to zero). Given low SNR
inputs (+3dB max.), and very non-stationary conditions
(variable foot contact pressures, variable gait cycle timing,
plus variable muscle and external EMF interference
signals), the demands upon the signal processing
algorithm for robust ENG processing are, indeed, strict!

o Finally, it is important to note that this is an uncon-
ditionally real-time processing application. Most ENG
processing algorithms have, up until now, primarily been
designed to characterize the properties of afferent nerve-
cuff recordings off-line, and typically used inherently non-
real-time methods, such as ensemble averaging, to
enhance SNRs. When real-time information is desired.
the standard processing method still widely used is to bin-
integrate (over the inter-stimulation pulse interval) the
rectified. filtered signal. Commonly referred to as the RBI
(Rectified, Bin-Integrated) signal, this vields, essentially a
standard Ip-norm detector (or the energy over a window,
if the squared signal is integrated), based on the signal’s
1st order statistics. Unfortunately, while simple to imple-
ment (even with analog circuitry). energy detectors per-
form poorly on low SNR signals, with non-stationary
noise. In order to improve detection reliability. specifi-
cally for the drop-foot application. an adaptive noise
threshold was incorporated into the standard RBI algo-
rithm. along with a windowed detector, [7]. Using these
modifications, we obtained an average detection ratio of
85%, with no FPs. Since this was deemed unacceptable,
we began investigating more robust detectors, in which a
fundamental criterion is the ability to reject non-
stationary, wide-band (essentially white) noise.

It has previously been shown, [4], [5]), that good
detection reliability is achievable using second- and
higher-order statistics (HOS) on speech signals with




SNRs in the range mentioned above. This observation has
prompted us to investigate the performance of detectors
used for speech signals in the present problem. There are
many similarities between the problems of detecting
speech in noise and nerve-cuff signals in noise, indicating
that similar methods may be applicable. However, one
fundamental difference between speech and nerve signals
is the onset/offset ambiguity issue mentioned above.

2.1 Autocorrelation-based detectors

The first, more advanced. detector investigated is based
upon the signal’s 2nd-order statistical properties. The
method is based on the fact that the autocorrelation
matrix R of a signal that contains only white noise is
diagonal, with all diagonal entries equal to the variance
of the noise, o”. All (say Q) eigenvalues of this matrix
are, therefore, equal to o". as well. If an information
(non-white) component is also present in the signal, then
R is no longer diagonal, and consequently its (real,
positive) eigenvalues are not all equal. Testing for the
presence of activity in the signal thus becomes equivalent
to testing for (non)equality of the eigenvalues of R, under
the assumption that the additive noise is white. Given
that R can be estimated from a record of N samples
through the observation matrix X, as R = X « X", the
singular values of X can be used for the test. These are
obtained using a Singular Value Decomposition (SVD).
It has been shown that a computationally efficient method
of solving the SVD problem, when the data is real-only, is
the use of the Jacobi rotation algorithm, [3].

The actual test is performed by comparing the differ-
ence or the ratio of the maximum and the minimum
eigenvalues, not to zero or one, respectively (as would
ideally be the case), but to appropriately set thresholds. In
theory, a significant advantage of this detection method
over the RBI (or energy) method is that it is immune to
the noise level (variance). This is because the white noise
variance acts as a DC offset in the eigenvalue domain,
which doesn’t affect the eigenvalue difference. In prac-
tice, this detector is much more immune to non-stationary
noise levels than the RBI detector, and yields better
detection SNRs. Yet, since it primarily acts as a whiteness
versus non-whiteness test, it is sensitive to the color of the
noise. Note that in our case a significant proportion of
the noise is due to the amplifier’s colored (1/f) noise.

2.2 Cumulant-based detectors

In order to overcome this limitation. detectors based on
the higher-order statistics (HOS) of the data were also
tested. The 3rd-order statistics of a signal provide a
measure of the skewness (difference from the Gaussian
distribution) in the signal’s statistical distribution,
whereas the 2nd order statistics (autocorrelation -and
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spectrum) only provide information about the signal’s
variance. Detectors based on 3rd-order cumulants have
been successfully employed for speech signals due to the
fact that quadratic phase coupling, present in voiced
speech due to non-linearities in the vocal tract, [4], [1].
can be detected using 3rd-order statistics. Although a
precise model for the signals recorded by nerve-cuff
electrodes has yet to be developed, it has been shown, [6],
that these signals result in the non-linear combination of a
series of action potentials, themselves modeled by a non-
linear combination of sinusoidal functions. Thus it seems
reasonable to assume that, in analogy with speech signals,
there are significant (i.e. detectable) non-linearities in
nerve-cuff electrode signals. In this case. it can be proven
that the 3rd order cumulant of such signals cannot be zero
for all lags. Thus a detector, using a method similar to
that employed in the eigenvalue-spread algorithm, can be
designed using only this diagonal vector as follows:

The 3rd order cumulant of a record of data. x(n), is
computed as: ¢, = (1/ N)Y, x(n)x(n+7,)x(n+1,)

for an appropriate set of lags (%, 7)), lying on the main
diagonal (7% = 1) of the 2-D plane. This is, essentially,
equivalent to computing the autocorrelation of x(7) and
x*(n). TheQ xQ Toeplitz matrix C; is formed from the

first Q diagonal lags (where Q is chosen empirically) and
its SVD is computed, as in the 2nd order case. In the 3rd
order case, however, it is sufficient to simply use the
maximum eigenvalue (rather than the difference between
maximum and minimum) as the single test parameter. In
this case, we are testing the matrix entries against zero as
an indication of the presence of skewed components in the
data (here, noise is assumed to be colored, but non-
skewed). In practice, the maximum eigenvalue is
compared against an empirically determined threshold.

The 3rd order method requires slightly more computa-
tions than the 2nd order case; yet, it is substantially less
sensitive to additive (non-stationary) noise variance than
either the RBI or 2nd order methods. This is important in
a neuralprosthetic application where noise levels (and
signal properties in general) vary not only amongst
applications (i.e. the nerve used, its size, the size of the
cuff electrode, etc.), but also amongst patients, and even
with the time after implantation. Finally, the storage
requirements of both the 2nd and 3rd order algorithms are
well within the bounds of the on-chip memory of most
commercial DSPs in contrast to most frequency domain
(FFT or wavelet) methods. which generally require the
addition of external memory. This is an important
consideration for portable (or implantable) systems. where
low power consumption is essential.




3. Results, Discussion and Conclusion

Figures 1 and 2 show a comparison of the 3 algorithms
described, under non-stationary noise conditions. In
Figure 1, linearly increasing white-noise (up to 100% of
nominal) was added to a typical afferent nerve-cuff (ENG)
signal in the region from 6000 to 10000 samples. The in-
creased amplitude between samples 3000 and 5000 corre-
sponds to increased nerve activity resulting from a single
mechanical stimulation of the skin in the innervated area.
This is also indicated by the arrow in Figure 2. The ordi-
nate is in Volts. The nerve-cuff output signal was ampli-
fied by 220,000, filtered with a 4th order Butterworth
bandpass (500Hz-3kHz) filter. and digitized to 12-bits
(£5V range) using a sampling frequency of 10,000Hz.

Figure 2 shows detection results when the 3 detectors
are applied on the noisy signal in Figure 1. Note that all
three detect the true ENG activity (arrow), although the
noise baseline, which defines the SNR of the detector
(since the data is normalized to the peak value), is highest
for the RBI detector and lowest for the cumulant detector.
Thus the cumulant detector yields the highest SNR and
the RBI detector the lowest, with the eigen-spread detec-
tor’s SNR falling in between. As is evident in Figure 2,
the SNR of the RBI detector decreases markedly with in-
creased noise power. Both the eigen-spread and cumulant
detectors continue to function at 100% added noise power.

In order for a natural sensory based device to be
accepted in clinical applications, the amount of parameter
adjustment required by the user (or physiotherapist) must
be minimal. This has proven to be a severe drawback with
RBI based detectors. Although we have obtained
reasonable success by adding adaptive noise thresholding
to the basic algorithm, we have not yet achieved a truly
robust RBI implementation that does not require frequent
parameter adjustments. Although it cannot be claimed
that HOS offer the best solution for all types of signals,
our preliminary results show that they hold great promise
in the detection of afferent nerve signals in noise. Further
improvements are anticipated through the use of (i)
automatic thresholding based on a fixed, specified FP
ratio, or (i) a bi-frequency domain bi-coherence
magnitude/phase detector, [1]. Further characterization
of the statistical properties of nerve-cuff signals will be
required to fully optimize future detection algorithms.
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Abstract

Here, we consider a speaker independent Hidden
Markov Model (HMM) based isolated word speech
recognition system. The most general representation of
the probability density function (pdf), in the classical
HMM, is a parametric one (i.e, a Gaussian). We intend
here to derive an unsupervised, non parametric and
multidimensional Bayesian classifier based on the well
known orthogonal probability density function (pdf)
estimator which does not assume any knowledge of the
distribution of the conditional pdf's of each class. Such
result becomes possible since this non parametric
estimator is suitable and adapted to Expectation
Maximization (EM) mixture identification algorithm.

Keywords : Unsupervised non parametric Bayesian
classifier, orthogonal probability density function
estimate, ~Expectation Maximization, Cepstrum
coefficients, Line Spectrum Pairs, Speech recognition,
Hidden Markov Model.

1. Introduction

Let us consider the isolated word speech recognition. For
each word of the vocabulary, we want to design a separate
M-state HMM. We represent the speech signal of a given
word as a time sequence of spectral vectors (i.e, the
Cepstrum or the Line Spectrum Pairs (LSP) coefficients).
In a recent study [4], we proved that these two different
kinds of acoustic analysis set of parameters provide a
comparable recognition rate performance. In this paper,
we focus our attention on the use of the LSP parameters
instead of using the Cepstrum coefficients. The d LSP
coefficients are computed with the antisymmetric form of
the Split Levinson algorithm. This method is shown to be
better, in terms of complexity, than other known
algorithms [8], d is chosen to be equal to 10. Thus, for
each vocabulary word, we have a training sequence
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consisting of observations of d-multivariate LSP. The first
task is to build individual word models by adjusting the
model parameters in order to maximize the likelihood of
the observation sequence. The most general representation
of the conditional pdf, for which an estimation procedure
has been formulated is a Gaussian distribution [1,2,5].
The goal here is to make refinements on the pdf
representation so as to improve the capability of modeling
the spoken word sequences. When we want to design a
speech recognition system, two fundamental procedures
are generally required. Firstly, some feature descriptors
are extracted from the observed speech signal. Secondly,
the signal is labeled using a classification rule in the
features space. Different classification algorithms are used
for such problem. The statistical approach is recognized as
efficient (Hidden Markov model, Bayesian classification
rule,.). For automatic speech recognition, the
unsupervised classifier is suitable since it is able to be
adapted to the speaker. The best statistical classifiers are
those based on the Bayesian classification rule since it
minimizes the posterior probability of miss-classification
which usually needs assumption on the pdf distributions.
However, we verify experimentally that the conditional
distributions with respect to a given class of the LSP are
not close to a parametric one and change considerably
according to the speaker, the pronounced word and so
on... The common recognition mechanism is based on the
HMM and makes use of diagonal Gaussian output
distribution for each state. Therefore, it is well easy to
show that the usual Gaussian hypothesis is not an efficient
approximation. In this paper, we intend to present an
efficient unsupervised Bayesian classifier without
assumption on the distributions of the LSP coefficients. In
this unsupervised context, the Bayesian classification rule
which known by its optimality in the mean of the posterior
probability of miss-classification criterion usually needs
some parametric hypothesis for the conditional
probability density function of each classes. Using the
orthogonal probability density function estimate [10], the
suggested classifier algorithm does not need any




assumption on the distribution of the observed data. In
this work, the proposed classifier is designed in two steps.
The mixture identification is the first step. It consists on
the estimation of the mixture parameters : the a priori
probability and the conditional probability density
functions of each class. It will be done with the
Expectation Maximization algorithm (EM) [9]. The
second step conmsists of the application of the Bayesian
classification rule. The paper is organized as follows : In
section 2, we give some elements of the isolated word
Hidden Markov Model. In section 3, we recall the
classical EM algorithm. Section 4 is devoted to the
presentation of the suggested non parametric classifier.

2. Elements of the isolated word HMM

An isolated word HMM is built up of the following :

i) M, the number of states in the model. We denote S, the
it state for i=1,......M. For our simulation M is equal to
10.

ii) The d-multivariate pdf f(x) for each state §

(B={ /; (x)}msM). The observation is a continuous random
variable, i.e, the Line Spectrum Pairs (LSP) coefficients.
iii) The state transition probability distribution A=[a]
with a=Pro[ q,,=S/ q=S; } for I<i,j <M, where q,
denote the state at time t. For our case, i.e, left-right
model (see Figure 1), we have a,=0 for j<i or j>i+2.

iv) The initial state distribution TI={p} for / <i < M and
p=Pro[ q,=8]. For our case, i.e, left-right model, we
choose p,=1 and p;=0 for i>1.

The complete specification of an HMM requires then
specification of M (the number of states), the M-

continuous d-mulitivariate pdf B={ /i (x)}lstsM,the matrix

transition A=[a], 1<i,j< M, and the initial state
distribution I1. For convenience, we use A’=(A, B, IT) to

denote the HMM model for the i word. A block diagram
of an isolated word HMM recognizer is given in Figure 2.

3. The classical EM algorithm

The classical EM assumes that the observed data is a
realization of a mixture of parametric distributions, so that
its pdf can be written as :

K K
f(x)=m f(x/0,) witho<m,<land Y.m, =1
k=1 k=1

where f(x/6,) is the conditional pdf of class k and =, is

the probability a priori of each class of a LSP vector. This
algorithm is iterative and has three main steps. We
propose to describe it here in the case of the Gaussian
hypothesis ( i.e : 6, =(n,, I,) where p, is the mean
vector and a I, is the covariance matrix of the class k).

Figure 1. A M state left-right HMM model
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- Initialization step : We suppose the number of classes X
is known and then an initial solution of the parameters of
the mixture are extracted from the histogram.

- Expectation step : It consists on the estimation of the a
posterior probability #}(x,) for the realization x,
belonging to the class k at the n™ iteration :

w21 (x,/8:)
K

;&; f(x,/8")

”i(x)=

- Maximization step : We build here the parameters
needed for the next step, in the follow way :

. 1&. . _ixiﬁ:(xl)
Y = DR B = S,
l=1n2(x‘)
N
L 2k =) R R (%)
o] == I
2Re(x%,)
i=1
for k=1,...., K

4. The proposed non parametric EM

4.1. Estimation based on orthogonal expansions

The estimation of the pdf based on methods of Fourier
analysis is suitable for this situation. Let X be a random
vector taking values in the d-dimensional Euclidean space

IR¢ and suppose that the distribution of X is described by
a probability density function f. Given a sample

X of N independent observations of X, the f X,
estimator of fis the probability density function :

.............

R 1
a(m, iy ) = ; Zle

{e( W sy ) (x)}

L,(Ja,b[?). 1ab[ is an interval of the real line. For

simplicity we consider the same K, = K, for all j=1,....,d.
This assumption does not induce a bad behavior on the
estimation of parameters since we use as orthogonal basis
functions in the multivariate case the product one of the
univariate basis.

, is a normal complete basis of
IN
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4.2. Description of the non parametric EM

This approach do not assume a knowledge on the kind of
the conditional pdf of LSP parameters, so that :

a. Initialization step : We suppose the number of classes K
is known and then an initial solution of the parameters of
the mixture are extracted from the histogram.

b. Expectation step : In this step, we estimate the a
posterior probability @,(x,) for the LSP vector x;
belonging to the class k at the n™ iteration by :

7 f(x,/8)
K ~
R f(x,/0])
J=1

T, (x,)=

c. Maximization step : The a posterior probability &t} (x,)
of each x; is computed. So that, at (n+1)* iteration, we
have ;

1 ] ¥

A n+ An

m, =--E7t, (xj),
N =1

K =int{(N]"')""] where N*' = N}*!

N
2R(x,)

J=1

antl
(m,...

m, ).k =

The Bayesian rule : After the mixture identification, the
Bayesian rule are applied in order to classify the speech
signal according to their LSP vector x; :

k(x,)= Ar{zzg{{nkf(x, /6,‘)}]

where k(x,) represents the label of the class of the vector x,.

For the database, the sct of speech sequences is separated
into two parts : one for training, the other for testing. The
database contains 10 digits (0 to 9) pronounced by 25
speakers with 150 utterances in the training set and 100 in
the test. The analog voice signal is digitized at 8 khz. The
signal is multiplied by a 32 ms Hamming window. The
LSP coefficients are computed every 16 ms. Finally, once
the set of Word HMMs has been designed and optimized,
recognition of an unknown word is performed by
computing the probability of the observation sequence for
each word model and select the word whose model score




is highest (i.e., the highest likelihood). As we have seen
here, the non parametric aspect comes from the use of the
orthogonal density estimates in the mixture identification
step which is reduced to the estimation of the first Fourier
coefTicients of these densities.

5. Conclusions

We have considered a speaker independent HMM based
isolated word speech recognition system. The speech
signal has been represented as a time sequence of LSP
coefficients. We have shown that the conditional
distributions, with respect to a given state, are note close
to a parametric one (i.e, a Gaussian). We have suggested
an unsupervised and non parametric estimator based on
orthogonal expansions to improve the pdf representation.
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Abstract

A new fast and robust HOS based algorithm for simulta-
neous voiced/unvoiced detection and pitch estimation using
3-level binary speech signals is presented. An accurate and
reliable voiced/vnvoiced detection of a speech signal and
associated pitch period estimation from the voiced part is
made in coloured noise environments with low SNR. The use
of the 3-level binary speech signals dramatically reduces the
computational effort required in evaluating the third order
cumulant. The superior performance of the new algorithm to
the conventional autocorrelation method using real speech
signals in low SNR environments is demonstrated.

1. Introduction

Accurate and reliable voiced/unvoiced detection of a
speech signal and associated pitch period estimation for the
voiced part are crucial preprocessing steps in many speech
processing applications and are essential in most analysis
and synthesis (vocoder) systems. These include automatic
detection of the beginning and ending of an utterance in a
long recording, speech segmentation and automatic isolated
word recognition (AIWR) [1, 4, 7]. Many algorithms have
been reported in the literature for solving the detection and
estimation problem using second order statistics such as au-
tocorrelation, cepstrum and average magnitude difference
function (AMDF) [1, 4, 5]. A common problem with these
second order statistics algorithms is that they are sensitive to
various noises. Third order statistics have been shown to be
particularly insensitive to various noises such as Gaussian
and coloured, sinusoidal and car noise [6, 9. HOS have
been applied in [6] to speech signals for pitch determination
using autocorrelation of the third order cumulants. In [7]
HOS have been used for end point detection of a speech
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signal by using the maximum singular value of appropriate
cumulant matrix. A voiced/unvoiced decision in the fre-
quency domain using HOS has been reported in [8] that
uses the bispectrum properties which approximate to zero
for the fricative phonemes and a complex structure for the
voiced phonemes. A main concern in using HOS in practice
is the excessive computation involved in its estimation. In
this paper we proposed a new fast and robust 3-level binary
HOS based algorithm for simultaneous voiced/unvoiced de-
tection and pitch estimation of speech signals that can work
satisfactory in low SNR environments. In section 2 the new
algorithm is described. In section 3 the simulation results
using real speech signals are presented and its performance
is compared to the conventional second order methods.

2. The Algorithm

The block diagram of the 3-level binary HOS based de-
tection and estimation system is shown in Fig.1. The speech
signal is segmented into overlapping 30 ms frames. The
system uses center clipping and infinite peak clipping as a
non linear spectrum flattening on the speech signal [2, 3].
For each frame a clipping threshold is computed as follows:

(1)

where from computer simulations an appropriate value for
K is found to be .2, c;, and ¢;, are the maximum amplitude
in the first and last third of the frame respectively. Thus a
3-level binary speech signal is produced by center clipping
and infinite peak clipping the speech signal with values of
~1,0, +1 depending on the relation of the original speech
sample to the clipping thresholds as follows:

1 if s(n)>q
z(n)=¢ -1
0

¢ = Kmin[ey, 1]

if s(n)<—q
otherwise

2)




g(n)
SEGMENT THE SPEECH SET CLIPPING NONLINEAR SPECTRAL
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OVERLAPPING FRAMES FACH FRAME (CLIPPING)
NO PITCH ESTIMATION
UNVOICED
VOICED
e
PITCH ESTIMATION NRCC ESTIMATION
FRAME OF NACC

Figure 1. Block Diagram of the N ACC System

where s(n) is the speech sample. Since the 1-d slice of the
third order cumulants is defined as:
¢e3(t) = E[z(n)z(n)z(n + 7)] (3)

each combination in Eq.(3) can assume the following 3-level
binary values as:

0 i am=0,
RONOETETES SR il
1 if s(ntr)=-1

(4)
Thus, a simple combinatorial logic circuit is only required in
computing each term in the third order cumulant and an up-
down counter to accumulate the actual third order cumulant
value of Eq.(3). The 3-level binary HOS based detection
and estimation system uses a normalized autocorrelation
function of the 1-d slice of the third order cumulants N ACC
defined as:

[0 eatmyes(n + 7))
Yo B(n+7)

The numerator and the denominator of Eq.(5) involves
simple logical operation. To simultaneously detect the
voiced/unvoiced region and the associated pitch period es-
timation for each frame the peak value of the NACC is
compared to a threshold as shown in Fig.1. If itis a voiced
frame the pitch and its period are estimated directly from
the positions where the N ACC has its maximum peaks.

NACC(r) =

(5)
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3. Experimental Results

To demonstrate the performance of the 3-level binary
HOS N ACC system for simultaneous voiced/unvoiced de-
tection and pitch estimation, the utterances of ‘siz’ is used
where the utterance has three unvoiced/voiced regions. Ad-
ditive coloured Gaussian noise of 5dB and 0dB SNR are used
for the simulations as shown in Fig.2. For voiced/unvoiced
detection the maximum peak of the NACC in Eq.(5) is
recorded for each frame as shown in (a) and (c) of Fig.3 re-
spectively. From the figures it clear thata level close to zero
signifies an unvoiced region while a significant value signi-
fies a voiced region. From the voiced region the pitch is si-
multaneously estimated from the periodicity of the N ACC
in Eq.(5) where for a voiced frame, the complete N ACC(7)
from that frame is plotted for the utterance as shown in
Fig.3(b). Clearly the pitch period and location can be simul-
taneously estimated from the index where the NACC ()
takes its maximum value.

To assess the performance of the 3-level binary HOS
N ACC system for low SNR such as 5dB and 0dB with the
conventional second order statistics (autocorrelation auto)
method [2, 51, the voiced/unvoiced regions for the utter-
ances of *siz’ is plotted in Fig.3(a), (c) respectively and for
the conventional auto method in Fig.3(d) and (e) respec-
tively. Comparing these figures to (a) (c) of Fig.3 we can
see that the conventional auto method has failed to iden-
tify the voiced/unvoiced part while the new 3-ievel binary
HOS N ACC system maintains its good performance in the
presence of a high level noise. The use of the normalized
autocorrelation in the new system works better than the di-
rect autocorrelation since it accounts for the non-stationarity
in the speech signal [5]. This will reduce the possibility of
pitch doubling or tripling encountered in autocorrelation
based algorithms due to more similarities in these lags than
that of the pitch period.




4. Conclusions

Fast and robust 3-level binary HOS N ACC system of a
speech signals has been described for accurate and reliable
voiced/Unvoiced detection and simultaneous pitch period
estimation for the voiced part. The algorithm can easily be
implemented in digital hardware using simple combinatorial
logic, i.e., an up-down counter can be used to compute each
cumulant point. The performance of the new algorithm has
been assessed using real speech signal in the presence of
low SNR. The robustness of the N AC'C algorithm has been
demonstrated and compared to conventional second order
algorithm for high level coloured Gaussian noise.
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ABSTRACT

This paper' addresses performance issues in the source
separation problem. By drawing on the theory of optimal
statistic matching, we derive new contrast functions which
are optimal among those involving a given set of cumulants.
In low noise, the optimal combination of a particular set of
cumulants are shown to be parameter independent and can
be pre-computed. We give specific exemples in close form
for several choices of 2nd and 4th order cumulants. The
resulting performance is investigated as a function of the
SNR and of the non gaussianity of the source signals and
further compared to suboptimal approaches.

1. INTRODUCTION

Source separation algorithms assume a linear model for a
vector z(t) of observations:

2(t) = As(t) + n(t) (1)

where matrix A is m x n with full column rank, n() is
additive noise and s(t) is a vector of n x 1 independent
components, $1(t),...,sn(t): the so-called ‘source signals’.

Source separation consists of recovering the source signals
and/or estimating the ‘mixing matrix’ A without using a
priori information about the latter. In this paper, we focus
on approaches based on cumulant matching and on contrast
functions. These two approaches are briefly reviewed below

Contrast functions have been introduced for source sep-
aration by Comon in [1]. The solution to source separation
is defined by the separating matrix B such that its output
y = Bux shows the largest possible ‘contrast’. For instance,
Comon in his ICA approach [1] suggests to maximize

o(B) = |Cum(ys, 47, i, 4} (2)

subject to Eyy? = I, {The constraint must be modified to
take noise into account). A similar contrast is optimized
by the joint diagonalization algorithm described in [2] as
JADE.

z(t)

s(—{ A B y(t) = 3(¢)

m X n n(t) nxm
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Cumulant matching approaches [3, 4] to source separa-

tion are a specific case of statistic matching. Denote T
a vector of statistic such that EyT = T(8) where 0 is an
unknown vector parameterizing the distribution of 7. An
estimate 8 of § may be obtained as § = arg mine c(f) where

c(f) is some measure of discrepancy between T' and T'(6),
like A )
o(0) = (T = T(8)) "W (T - T(9)) (3)

with W a positive matrix.

Contrasts and matching. This paper draws on the links
between these two approaches. If 7' is a vector of sam-
ple cumulants of £; and the unknown parameter 6 can be
identified with matrix A, then an objective like (3) may be
turned into a contrast function. The main benefit of this
perspective is that, given a particular set of cumulants, the
theory of optimal statistic matching indicates the optimal
weighting to apply to these cumulants.

This paper extends the work presented in [5] by consid-
ering optimal blind estimation of the mixing matrix from
both 2nd and 4th order cumulants (ref. [5] considered only
4th order cumulants). Including 2nd order statistics is im-
portant in the case where little information is available in
higher-order statistics. It is also more robust to the effects
of noise.

2. CUMULANT MATCHING AND
CONTRASTS
2.1. Assumptions.
To keep the exposition as simple as possible, we assume that

the noise covariance matrix and the cumulants of orders 4,
6 and 8 of the sources are known. They are denoted

ky, = Cum(sp, s;, Sp, s;), (4)
hp = Cum(sp,sp, sp, sp, 5p, Sp), (5)
op = Cum(sp,sp,p, Sp, Sp, Sp, Sp, Sp),s (6)
for p = 1,...,2. We also assume that n = m (the case

of m > n can be handled by first estimating the signal
subspace, which has little effect in the source separation
problem). We note that the source signals may be assumed
to have unit variance:

Bl =1 p=1,...,n (1)
because the amplitude of each independent component can
be integrated in the corresponding column of A. The fol-
lowing moments will appear in the sequel

ap = o0p+8hp+ 17k + 20k, + 4, (8)




hp + 5kp + 2,
hp + 4kp.

©)
(10)

For further reference, we mention that a, = 0 for constant
- 2
modulus sources (i.e. [sp]° =1 a.s.).

Tr
Ap

i

2.2.
1t is well known (see for instance [3]) that, under the ap-
propriate assumptions, the optimal matrix W for weighting
in (3) is the inverse of the (asymptotic) covariance of the

Optimal matching and contrast functions.

vector of statistics 7"

Wopt = Covy {T}. (11)
Let then TI denote a vector of sample cumulants of z and
consider how optimal cumulant matching instantiates in the
source separation case where, with the above assumptions,
the unknown parameter is the mixing matrix, i.e. § = A.

The optimal way of matching estimated cumulants T3 to
their theoretical values T:(A) is to minimize

o(A) = (T2 = Tu(A) 7 Covil(Ta) (To — Tu(4)) . (12)

We now make a key step: thanks to the multi-linearity of
the cumulants, matrix A factors out to some extent in (13).
As a matter of fact, setting B = A~! and y = Bz, crite-
rion (13) may be rewritten [6] as

(13)

which depends on B via the random vector y = Bz and via
the random vector
(14)

The net result is that an optimal criterion measuring cu-
mulant mismatch at the array output (i.e. for the r.v. =)
has been turned into a contrast function measuring the mis-
match between the ‘true’ camulants T, of the sources and
the sample cumulants 7, estimated at the output y = Bz
of the separator.

The beauty of this manoeuver is that for high enough
SNR, we have = = s, so that the criterion (13) is approxi-
mately equal to:

e(B) = (Ty - TS)H Cov™(T3) (Ty - Ts) .

def
z = § 4+ Bn.

e(B) = (Ty = T) " Cov™(To) (Ty = Tv)  (19)
with the key feature that the optimal weighting matrix
Cov"l(Ts) does not depend on A: it is, as a matter of
fact, a constant matrix which can be evaluated once for all
for a given distribution of the sources.

Further analysis is possible because, thanks to the as-
sumption of independent sources, matrix Cov(Ts) has a
nearly diagonal structure when T. is a vector of sample
cumulants [7]. It follows that it can be ‘manually’ inverted.
This leads, once a specific set of cumulants T has been cho-
sen, to simple contrast functions in which cumulant mis-
match is weighted on a statistically sound basis.

3. OPTIMAL CONTRAST FUNCTIONS.

Some examples are investigated in the next section where

we consider a cumulant statistic 7' containing both 2nd and
4th order cumulants (extending the analysis of an earlier

199

paper [5] where T could include only 4th order cumulants.)
The empirical cumulants of vector y are denoted

#i; = Cum(yi,y;) (16)
‘Ifi = Cum(yi,y], 9% 97) (A7)

where Cum is a standard cumulant estimator.

In order to carry out a detailed investigation, we make
the following simplifying assumptions. All the processes are
assumed to bei.i.d. and circularly distributed ; sources have
non-zero kurtosis: k # 0 for p =1,..., n; the noise is nor-
mally distributed, independent of the signals with covraince
matrix o21.

On this basis, we consider various sets of cumulants. We
do not present general analytical results when T'is the whole
set of 2nd and 4th order cumulants (except in sec. 3.1) be-
cause we prefer to focus on more specific cases which can
be detailed and because room is lacking for an exhaustive
report. For the same reason, we leave out the hard core
computations, namely explicit inversion of Cov(T). More
details will be found in [6].

3.1. The normal limit

When the sources are close to being normally distributed,
our analysis leads to a strikingly simple conclusion because

the limit form of Cov(T) is itself very simple. The optimal
criterion involving all 2nd and 4th order cumulants is

o(B)=3_ 4lig -85+ D lifr

Pq pyqrs

— k85> (18)

i.e. the mismatch of 2nd order cumulants receives a 4 times
heavier penalty than the mismatch of 4th order cumulants.
We have used the § symbol which evaluates to 1 when all
its indices are equal and to 0 otherwise.

Another limit case, which is in some sense complemen-
tary to the normal limit, is when the sources have a maxi-
mally low kurtosis. This is obtained when the sources have
a constant modulus. In no noise, there is infinite weight
on the auto-cumulant terms as well as on those containing

cross-cumulants of the form ¢;7, qf,f and on certain linear
combinations of the 2nd and 4th order cumulants rij, q:;
and ¢/7. It would be interesting to determine if the CMA
criterion which involves only 2nd and 4th order moments
and is super-efficient in the constant modulus case, could
be obtained as the limit of an optimally weighted criterion
involving a specific subset of 2nd and 4th order cumulants.

3.2. Autocumulants
Matching only euto-cumulants is to take

- 21 a2 “n a1l .22
Ty = [le"za~~~qullny22,-.-

T. [1,1,...,1, k1, k2, ..oy K.

ANT

s Gnn )

The best criteria based on these cumulants turns out
(maybe not surprisingly) to be a sum of criteria, each term
being concerned with a particular output, i.e. caum(B) =

Z:=1 cp(B) with

ep(B) (kp + 1) 1655 — kpl* + atp [#pp — 117
2>‘P ('Fpp - 1)(‘?25 - kr)

which can also be written as sums of squares:

CP(B) = Iﬁp(é;’iﬁ ~kp) — Cp(imi - 1)|2 + Ppl'fpp - 1|2

(19)

(20)




where & = ky + 1, ¢p = Ap /¢, and pp = ap — (. Again, if
the source distributions are close to normal, then all cumu-
lants are close to 0 and, according to (8), @ ~ 4. Thus, we
have in the normal limit

Connol B) =l = 1 + |85~ ko2 (21)
p=1

where the coupling between 2nd and 4th order cumulant
estimates has disappeared.

3.3.  All 2nd and auto-4th order cumulants

This criterion is interesting because it relates to Comon cri-
teria in that the same set of cumulants are used, except that
these are combined in an optimal way. The performance
relationship between the two is illustrated in the following
section. The criteria itself. optimally involving the whole
2nd order information and only the auto 4th order cumu-
lants is

n
C24antot(B) = Cauto(B) + Z ITPq|2' (22)
p#q
It is seen that the cross-correlation terms add very simply
to the cauio(B) criterion.
3.4.

The case where the whole 4th order cumulant set

4th order cumulants only

Ty=1{a 11<4,5,k1<n} (23)

is involved in the estimation was investigated in [5]. For
two identically distributed sources, we obtained

r(B) = |g11 — kI + 1633 — k? L @l 4 2lail

'* a (k+1)2 " (k+2)2

J20dn P + 1)) L2 s - @) (24)
~ + L2 72 — k4

For instance, in the case of two QAMI16 sources, one has
k= —0.68, h 2.08, o —13.5184 (we assume that
the phase of these constellations is randomized and we re-
call that, by convention, the sources have unit variance).
The optimal criterion based on 4th order cumulants for the
source separation of two QAMI6 signals is then approxi-
mately, at low noise:

es(B) = 0.72()¢17 + 0.68[° + (¢33 + 0.68]%) + 9.77|¢}2|?
+LI51631 1° + 1.75(|g13 17 + 1633 1) + 3.72)d33 — ¢332

This shows that in this case the cross-cumulant §i2 is a
more reliable measure of independence than, say, ;2.

3.5. Link to suboptimal criteria

Now as pointed out before, a number of algorithms in
the literature (ICA, JADE) can be interpreted in terms of
statistic matching. However these do not use the optimum
weighting. Rather they are based on a hard prewhitening in
the sense that the (empirical) covariance matrix of the sig-
nals at the output of the separating matrix is constrained
to be exactly the identity matrix, leaving no room for an
‘approximate decorrelation’.

This can be interpreted as the weighted statistic matching
in which virtually infinite weights are put on the second
order statistic terms and flat weights on the 4th order terms.
In practice the limit as one increases the weight on the
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second order terms can be taken. Results in the next section
demonstrate the equivalence of this weighted statistic with
the ICA/JADE contrasts.

Use of this suboptimal weighting results in a performance
loss which we illustrate in the next section. In addition
we will consider the flat weighting which is simply statistic
matching with equal weights applied to all the statistics.

4. ASYMPTOTIC PERFORMANCE

We shall be using the interference rejection at the output
of the separating matrix as the measure of performance in
our analysis. The relevant figure of merit is the ISI (inter
symbol interference) which is defined pairwise between two
sources p and ¢ as the ratio of the power of source j to
that of source p at the channel output corresponding to g;
since this is proportional to 1/N where N is the number of
samples, we shall really be considering the ISI rate, given
by N x ISI in the subsequent expressions and plots.

Indeed the performance can be expressed in terms of
the perturbation of the global system from the identity,
BA = I + £ Then ISy = E|£,|? and this may be
computed from the covariance of £ which itself is given by
(W2 Dy* (W2 Cov(TYW/2) (W2 D)#H where D is the
derivative 9T/9€.

Two performance bounds.

Denote ppq the (p,¢) entry of matrix (A A)™" and let
o be the noise power. Any source separation using hard-
whitening has a pair-wise lower bounded rejection rates 8].
We call this the ‘pre-whitening bound’. For n = m, it is

1
I8Ipq + IS1gp > 5(1 + 0pp)(1 + 0pgq) (25)

Another bound is provided by computing what would be
the ISIif matrix A was identified knowing the source signals.
This is the so-called I/O (input/output) bound. It is:

ISlpq 2 oppp (26)

Some numerical evaluaions are given below for illustra-
tion.. They are computed for a 2times2 matrix A = [as, a2]
such that |a1| = |az| and with the values of p;; indicated
on the plot. We use QAM4 and QAM16 distributins with
a randomized phase (to ensure circularity).

Optimal contrasts. Figure 1 for the case of two identical
sources shows the effect of strictly increasing information
as we go from the optimal criterion using the 4th order
cumulants to that involving entire second and 4th order cu-
mulants to the input-output bound. The optimal criterion
involving all the second order and the 4th order auto cumu-
lants is also shown. We note that for QAM4 at good SNR,
optimal matching of 2nd and 4th order cumulants is close
to I/O performance (there is a ratio of 2 in terms of ISI); in
this situation includind 2nd order information seems crucial
for good performance (see how the curve for 4th order lev-
els off at increasing SNRs). These conclusions do not apply
to the QAM16 case (there is clearly a ‘constant modulus
eftect’ here).

Suboptimal contrasts The next figure 2 indicates the
performance of actual JADE/ICA contrast based algo-
rithms compared to the suboptimum criterion employing
flat weighting. The bound for pre-whitening is included for
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reference. We note that the use of the optimum weights in-
stead of the hard weights for pre-whitening overcomes that
bound. Moreover the actual performance of the above algo-
rithms can be dominated by this effect in high SNR, a point
which is more evident in the upper panel for two QAM4
sources.

Effect of source distributions We round off this discus-
sion with an illustration of the effect on performance as the
source distribution varies from the constant modulus limit
to the Gaussian limit. Figure 3 illustrates the variation of
ISI rate as we start with two QAM4 sources and make them
progressively more Gaussian by adding a Gaussian compo-
nent to the source with a relative amplitude of ¢, which
can then be treated as a ”Gaussianity parameter”. Note
how the pre-whitening loss constrains the performance of
the JADE/ICA algorithms at small values of ¢ while the
optimum 4th order criterion does uniformly worse. Further
note the flattening of the optimum 2+4 curve near the CM
limit and the transition near ¢ = 1 corresponding to the
CGaussian component effectively smearing out the discrete
nature of the distribution. On the other hand, we see that
ICA/JADE contrasts do as well as optimal matching of 2nd
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and 4th order cumulants as the distribution of the sources
gets close to normality.

ISI_12 as two identical QAM4 sources become increasingly Gaussian
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CONCLUSION

This paper develops the link between contrasts for source
separation and criteria based on optimal statistic matching.
A number of optimal and sub-optimal criteria are proposed,
studied and compared. The ICA contrasts of Comon and
of Cardoso are investigated within the same framework; it
is seen from the examples that the primary cause of per-
formance loss of those algorithms relative to the optimum
criteria at high SNR is caused by the hard pre-whitening.
The effect of source distributions on performance is also il-
lustrated; we find in particular that JADE/ICA constrasts
are very suboptimal for constant modulus sources but tend
to be optimal as the source distributions are pulled from this
limit case. More illustrative examples will be presented at
the workshop.
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Abstract

In this paper, an algorithm using the well-known
notch filter and an algorithm using a peak filter are
proposed to estimate the frequencies of sinusotdal sig-
nals with a given set of Gaussian noise corrupted mea-
surements y(n) provided that the number of sinusoids is
known in advance. The former processes y(n) such that
a single fourth-order cumulant of the notch filter out-
put is minimum in absolute value, while the latter pro-
cesses y(n) such that the same fourth-order cumulant
of the peak filter output is mazimum in absolute value.
Then the unknown frequencies are obtained from the
optimum notch filter and the optimum peak filter, re-
spectively. A performance analysis of the proposed two
algorithms 1s then presented followed by some simula-
tion results for a performance comparison of the pro-
posed algorithms and Swami and Mendel’s SVD low-
rank epprozimation method.

1. Introduction

Estimation of parameters of sinusoidal signals is a
problem to estimate frequencies 0 < w; < 7 and ampli-
tudes A; > 0 with a given set of noisy measurements
modeled as follows:

P
y(n) = ZAicos(win + ¢:) + w(n) (1)
=1
where p is the total number of sinusoids, ¢;’s are ran-
dom phases and w(n) is additive noise. This is a
well defined problem in some statistical signal pro-
cessing areas such as noise and interference cancel-
lation and estimation of direction of arrival (DOA)
of narrowband source signals in sonar and radar ar-
rays. Usually, frequency estimation is followed by am-
plitude estimation because the former often resorts to
a nonlinear search procedure while the latter can be
solved from a set of linear equations once w;’s are es-
timated. There have been a number of correlation

This work is supported by the National Science Council un-
der Grant NSC 85-2213-E-007-012.
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(second-order statistics) based algorithms reported for
the estimation of w;’s such as Pisarenko’s harmonic
decomposition procedure [1], Tufts and Kumaresan’s
method [2], overdetermined Yule-Walker method [3]
and maximum-likelihood method [4]. Chicharo and Ng
[6] proposed an adaptive notch filtering approach for
the enhancement and tracking of sinusoids in additive
noise. The transfer function of notch filters (IIR filters)
of order equal to 2p is given by

[Tioi(1+ Baiz™! + B2277)
P11+ aaz—! + a?z-2)

Hp(2) = 2

where 0 < # < 1and 0 < a < 8. The w;’s are obtained
by solving roots of the numerator polynomial of the
adaptive notch filter.

Higher-order (> 3) statistics, known as cumulants,
have been used for frequency estimation of sinusoidal
signals when measurement noise is Gaussian because
all higher-order cumulants of Gaussian noise are equal
to zero. Thus cumulant based frequency estimation
algorithms [6-8] are insensitive to additive Gaussian
noise. In this paper, the notch filter and a peak filter,
using a single fourth-order cumulant are proposed for
frequency estimation of sinusoidal signals. A perfor-
mance analysis of the proposed frequency estimation
algorithms (one using the notch filter and the other
using a peak filter) is presented followed by some sim-
ulation results.

2. Cumulant based harmonic retrieval
using notch filters and peak filters

Assume that we are given a set of noisy measure-
ments y(n),n = 0,1,---, N — 1 modeled by (1) under
the following assumptions:

(A1) The number p of sinusoids is known a priors
amplitudes A; > 0 and frequencies 0 < w; <
m,t = 1,.--,p are unknown.

(A2) Measurement noise w(n) is Gaussian with un-
known statistics.




(A3) Phase ¢;’s areii.d. random variables with a uni-
form probability density function over [~m, )
and they are statistically independent of w(n).

Let Cpre(ky,- -, kpr—1) denote the Mth-order cu-
mulant function of a non-Gaussian signal e(n). We
need the following proposition on which the two fre-

quency estimation algorithms to be presented are
based.

Proposition 1. Let e(n) be the output of a linear
time-invariant system H(z) with input y(n) given by
(1) under the assumptions (A1) through (A3), ie.,

e(n) =y(n)xh(n) = D h(k)y(n—k)  (3)

k=—o0

where h(n) is the impluse response of the system. Then

Y4
Cac(0,0,0)= —3 S AL IHEE (@)
i=1

A. Notch filter based algorithm:

By Proposition 1, one can infer the following fact:

(F1) Let e(n) be the output signal given by (3) of the
notch filter Hp(z) with 8 = 1 given by (2). Then
|C4,6(0,0,0)] = min{|C4,(0,0,0)[} = 0 occurs
only when |H,(e*#)| = 0 for all 4, i.e.,

(5)

Let 6'4,5(0,0,0) denote the fourth-order sample cu-
mulant associated with Cy(0,0,0). By (F1), we pro-
pose the following frequency estimation algorithm:

Algorithm 1:

a; = —2 - cos(w;)

(S1) Let e(n) be the output signal given by (3) of the
notch filter H,(z) (8 = 1) given by (2). Find
the optimum parameters @;,i = 1, -, p of Hy(2)

such that |Cy (0,0, 0)| is minimum.

(S2) Obtain &; by (5), ie.,
(6)

©; = arccos(—a;/2)

B. Peak filter based algorithm:

The peak filter used for frequency estimation is an
IIR filter with transfer function

P_ (14 paa;z™! + p*a®z7?)
P (14 agiz7t +a?272)

Vo(2) = )

where 0 < o < 1 and 0 < p < 1. The peak filter differs
from the notch filter in that each pair of complex con-
jugate poles (with magnitude o) are closer to the unit
circle than the associated pair of complex conjugate
zeros (with magnitude ap < « ).

Again, by Proposition 1, one can infer the following
fact:
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(F2) Let e(n) be the output signal given by (3)
of the peak filter V,(z) given by (7). Then
|C4,6(0,0,0)| = maz{|Cs,e(0, 0,0)|} occurs when
a;,1=1,---,p of V,(2) are given by (5).

The following frequency estimation algorithm is due to
(F2):

Algorithm 2:

(S1) Let e(n) be the output signal given by (3) of the

peak filter V,(2) given by (7). Find the opti-
mum parameters a;,i = 1,---,p of Vp(2) such

that |6'4,e(0,0,0)| is maximum.
(S2) Obtain &; using (6).
To find the optimum @; required in (S1) of the pro-

posed two algorithms, we have to resort to iterative
optimization algorithms because

R V-l V-t 2
C1,6(0,0,0) = & > et(n)-3 (-]-V— > ez(n)) (8)
n=0 n=0

is a highly nonlinear function of a;. A gradient type

jterative algorithm is used to search for the optimum

a = (aj, --,ap)7. At the nth iteration, a is updated

by

8|C4,6(0,0,0)]
da

where 7 is a small positive constant and “—” is for Al-
gorithm 1 and “+” is for Algorithm 2, respectively.
An initial condition for a(0) is needed to initialize the
iterative algorithm given by (9). Swami and Mendel’s
method [6] can be used to obtain an estimate for each
w; and the associated a; computed by (5) can be used

for a(0).

A(n)=8(n—1)n lacginy O

3. Performance analysis

To illustrate the performance of the proposed two fre-
quency estimation algorithms, let us assume that p = 1,
Ay =1, w; = 0.57 and w(n) is white with variance 2.
Then

_f (3/8)|H1(e?r)|* for Algorithm 1
[C1,(0,0,0)] = { (3/8)[Vi(e?*)[* for Algorithm 2
with the same optimum solution a; = a = 0 by (5).
Figure 1 (a) shows log10|Cy,.(0,0,0)| associated with
the peak filter used by Algorithm 2 for p = 0.9 and
a = 0.9 (dashed line), 0.95 (dotted line) and 0.99 (solid
line), respectively, and Figure 1 (b) shows |C4,(0,0,0)]
instead of log19|Cys (0, 0,0)] associated with the notch
filter used by Algorithm 1 for § = 1 and o = 0.9
(dashed line), 0.95 (dotted line) and 0.99 (solid line),
respectively. One can see, from these two figures, that
a single peak (whose magnitude is larger for larger a)
in Figure 1 (a) and a single notch (|Cy,(0,0,0)| = 0)
in Figure 1 (b) located at a = 0 are associated with




each curve, and that the larger «, the narrower is the
peak for the former and the notch for the latter.
It can be shown that

C3,6(0,0,0) & C1,6(0,0,0) + C4,ur(0,0,0)  (10)
where CA’4,w/(0,O,O) is the fourth-order sample cumu-
lant of the Gaussian noise w’(n) in the filter output e(n)
due to the presence of w(n). Note that Cy 4 (0,0,0) it-
self is a random variable. For the notch filter, it can be

shown that for a = 0
2

|1| )

E[C3,:(0,0,0)] > o} = [ Z (1-

where ry,/(I) (autocorrelation function of w'(n)) is given

by
0'2 . __.2_2) l — 0
’I‘w/(l) = 5 1:201—1 M eos(in /2
{ oy - (1)ia2)ag B 10

Therefore, min{|C4.(0,0,0)|} = 0 is easily smeared by
C1,4(0,0,0) if 61 > 0 (low SNR). On the other hand,

for the peak filter, it can be shown that for a = 0

R — 1)204 4
E[CZ’w,(O)0,0)]gagz1050~( (—”—L> S

1— ot
One can easily infer that if maz{|C4.(0,0,0)|}/0; =
(3/8)|Vi(e7%5™) |4 /oy > 1, the optimum a = 0 can be
accurately estimated even 1f SNRis low. For instance,
maz{|Cy(0,0,0)]} = 4316 > o3 = 28.6 for SNR =
0dB, p =09 and e = 0.99. Therefore, the previous
performance analysis leads to following fact:

(F3) Algorithm 2 outperforms Algorithm 1 for fi-
nite data, because the former is more robust to
additive noise than the latter.

4. Simulation results

As mentioned in Section 2, SM method [6] was used
to provide an initial condition for the proposed two fre-
quency estimation algorithms. In the simulation, thirty

independent runs were performed to compute the mean
square error (M SE) defined as

MSE = OZ{Z(f” )%

j=1 i=1

(11)

where f; = w;/27 and f,-j is the obtained estimate for
Ji at the jth run. Two sets of simulation results (p = 1
and p = 2, A; = A,) for measurement noise w(n) as-
sumed to be white GGaussian were obtained using Al-
gorithm 1 with # = 1 and @ = 0.99 and Algorithm
2 with p = 0.9 and « = 0.99, respectively.

Let SNR = A?/(202) where o2 is the variance
of w(n). Table 1 shows the simulation results for
p=1 A =1 fi =02 N = 1024, 2048, 4096
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and SNR = 0, 5, 10, 15, 20 dB. From this ta-
ble, one can see that Algorithm 2 performs best, SM
method performs second and Algorithm 1 performs
worst. On the other hand, Table 2 shows the corre-
sponding results for p =2, Ay = A2 =1, f; = 0.1 and
f2 =0.2. From Table 2, one can see that Algorithm
2 performs best except for the case that SNR =0 dB
when N = 1024 and 2048 while SM method performs
best for this case. These simulation results indicate
that the latter may perform better than the former for
small N and low SNR. However, Algorithm 1 always
performs worst as predicted by (F3), and its perfor-
mance for Jow SN R may not improve even when N is
increased (see the results for N = 2048 and 4096 when
SNR =0dB, 5 dB and 10 dB in Table 2). The rea-
son for this is that although N was doubled, the notch
of min{|Cs,.(0,0 0)|} =0 in some realizations was

severely smeared by Cy (0,0 ,0) = Cy ¢(0,0,0) at the
vicinity of (a1,a2)7 = (- 2c0s(0.2m), —2cos(0. 4T
where w'(n) was the Gaussian noise in the notch filter
output due to measurement noise w(n).

5. Conclusions

We have presented two frequency estimation algo-
rithms with a given set of noisy sinusoidal signals un-
der the three assumptions (A1) through (A3). Al-
gorithm 1 uses the notch filter and Algorlthm 2
uses the peak filter, while the former tries to minimize
but the latter tries to maximize the same single abso-
lute fourth-order cumulant. A performance analysis for
the proposed two algorithms was also presented. Then
some simulation results obtained by the proposed two
algorithms and Swami and Mendel’s method were pre-
sented for a performance comparison. The presented
simulation results support that Algorithm 2 performs
best for the case of p = 1, but for the case of p = 2 it
performs best except that when N is small and SNR
is low, Swami and Mendel’s method performs best.
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Figure 1. (a) log10|C4,¢(0,0,0)] associated with the peak filter for p = 0.9 and a = 0.9 (dashed line), 0.95 (dotted
line) and 0.99 (solid line), respectively; (b) |C4,e(0,0,0)] associated with the notch filter for 8 = 1 and o = 0.9
(dashed line), 0.95 (dotted line) and 0.99 (solid line), respectively.

MSE(x10~7) MSE(x10~7)

N | SNR SM Algori | Algori N | SNR sSM Algori | Algori
Method | -thm 2 | -thm 1 Method | -thm 2 | -thm 1

20dB | 0.0171 0.0026 | 0.0471 20 dB | 1.4042 0.0035 | 0.5792

15dB | 0.0266 0.0122 | 0.1401 15dB | 1.5070 0.0041 | 2.0163

1024 | 10dB | 0.0634 0.0310 | 0.3955 1024 { 104dB | 1.8507 0.1120 | 100.93
5 dB 0.3141 0.1838 | 1.6149 5 dB 4.8170 0.0266 | 1394.9

0dB 4.4869 2.3268 | 8.3789 0dB 86.835 148.69 | 3034.0

20dB | 0.0026 0.0003 | 0.0478 20dB | 0.2858 0.0010 | 0.5308

15dB | 0.0059 0.0026 | 0.1439 15dB | 0.3233 0.0011 | 1.7446

2048 | 10dB | 0.0214 0.0112 | 0.5197 2048 | 10dB | 0.5162 0.0023 | 42.250
5dB 0.1717 0.0856 | 1.7674 5dB 2.3045 0.0066 | 269.14

0 dB 3.7787 1.6415 | 8.2338 0 dB 39.381 41.777 | 1605.0

20dB | 0.0010 0.0003 | 0.0199 20dB | 0.0974 | 0.0002 | 0.5556

15dB | 0.0019 0.0004 | 0.0617 15dB | 0.1133 0.0005 | 1.8608

4096 | 10dB | 0.0060 0.0015 | 0.1888 4096 | 10dB | 0.2016 0.0006 | 239.27
5 dB 0.0480 0.0152 | 0.5698 5 dB 0.9268 0.0013 | 518.37

0dB 0.9703 0.3434 | 1.7159 0dB 10.896 0.0035 10596

Table 1. M SE’s associated with the SM method, Al- Table 2. MSE’s associated with the SM method, Al-
gorithm 1 (using the notch filter) and Algorithm 2 gorithm 1 (using the notch filter) and Algorithm 2
(using the peak filter) for p = 1 and f; = 0.2. (using the peak filter) for p =2, f; =0.1and f, =0.2.
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Abstract

Estimates of Higher Order Statistical quantities (such as
the bicoherence) have higher variances than their second-
order counterparts. Reliable estimates can be obtained by
using longer data records, but in practice this is often not
possible. In direct-method bicoherence estimation, estim-
ates from shorter records can be highly dependent on meas-
urement errors and background noise. To try to get around
these problems, a new bicoherence measure based on the
a—trimmed mean bispectrum is described. Simulations in-
dicate how well this new measure performs compared to the
standard bicoherence measure.

1 Introduction

The discrete bispectrum of a discrete, stationary,
stochastic process z(n) can be estimated using a segment-
averaging approach [4]; the signal z(n)(n = 1,..,N) is
divided into K non-overlapping segments (m = 1,.., K),
each of length Nprr (N = NpprK). The Np pr —point
DFT X, (k) is computed in each segment m, and the bis-
pectrum is estimated using

Bk,1) = }IEZBm(k,I) = %ZXm(k)Xm(l)X;;(k-H),

eY)

in which 3" = "X _ . As it stands the variance of this
estimate is different in each bifrequency bin (k, /) [3]. The
variance can be (approximately) flattened by normalising
the bispectrum to form the squared bicoherence b*(k, 1) [4]

A 2
b2 (k1) = M—, )
Sk, )P(k+1)

in which

S(k, 1) %Zsm(k, )

1
EZ | Xm(k)Xm(l) |2)
*supported by EPSRC and BT Laboratories.

tsupported by NERC.,
tsupported by The Royal Society.
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Pk +1)

1
EZPm(k—H)

A Xk + DXk +D, G

are the denominator components and again 3~ = YK _ .
The methods used in this paper are equally applicable to
other bispectrum normalisations, and similar results (not
shown) have been achieved for the skewness function.

Previous applications of the bicoherence for Quadratic
Phase Coupling (QPC) detection [4, 1] have considered
coupled sinusoids in white Gaussian background noise, but
there has been no investigation into how well the bicoherence
detects QPC if the background noise includes disturbances
such as transients. Furthermore, previous analyses have typ-
ically used long data records such that K = Npprp, but in
practical applications the data length N (and thus K') may
be limited.

Under these more demanding conditions, new problems
can. arise. Although the bispectral estimate (Eqn. 1) is
asymptotically complex normal [3], if K is small the dis-
tributions of R[B(k, )] and S[B(k, {)] may be non-normal.
Furthermore, bispectral estimates from short records are
small-sample estimates of large-variance quantities, and so
occasional large values (possibly due to estimation errors,
or to external transients) can exert a strong influence over
the bispectral estimate. In other words, the distributions of
bispectral estimates based on small, noisy samples may have
long tails, and so bispectral averages formed using the mean
estimator (as in Eqn. 1) may be susceptible to outliers.

The new method developed in this paper is based on
forming a bispectral estimate without using the values in
the tails of the distribution. Obviously this will reduce the
variance of the estimate, and in the case where the sources
of error described above are small the new estimate will be
worse than the raw estimate. However, in cases where the
sources of error are significantly large (and this can often
be gleaned from inspection of the time series and power
spectrum) the new method can result in improved estimates.

Thekey assumption in this new method is that the sources
of error described above influence the bispectral estimate in
a small number of segments only. i.e. that extreme bispec-




tral values (due to either measurement errors or transients)
occur only in a small number of segments. By excluding
these it is hoped that the resulting bispectral estimate, and
subsequent bicoherence estimates will be more robust. Pre-
vious applications of robust techniques to HOS have been
limited to time domain parameter estimation problems [5].

2 An o-trimmed mean estimator for the bis-
pectrum

The key steps in the computation of the o—trimmed-
mean bispectrum estimate will now be described. These are
based on the o—trimmed mean algorithm described in [6].
The o—trimming is applied to the real and imaginary parts
of the bispectral estimate separately, because o—trimming
is only appropriate on signals which are symmetrically dis-
tributed [6] (For this reason it cannot be applied directly
to the bicoherence estimate). The algorithm is described
below.

1. Divide the time series z(n)(n = 1,...N) into K seg-
ments (for clarity it is assumed that there is no over-
lapping of the frames).

. Compute the raw bispectral estimates By, (k,l)(m =
1,.., K) (see Eqn. 1).

. For each (k, [) form two vectors r = [ry, .., rk]” and
i = [41,..,ik]%, each containing K integers. Each
integer in r (or i) identifies a segment m, and hence a
value of R[B(k,1)] (or S[Bm (k,1)]). The integers
inr and i are arranged so that

R(By,(k,0)] = min®R[Bm(k,1)],
R(Brx(k,D] = maxR{Bm(k, D],
S(Biy(k,1)] = minS{Ba(k, 1),
S[Bix(k, )] = maxS{Bm(k,D]. @

Note that the ordering is done separately for real and
imaginary parts. r and i thus determine the order
statistics [6] of the real and imaginary parts of the raw
segmental bispectrum estimates.

. The o-trimmed mean estimate at a particular bifre-
quency (k,1) is then evaluated as the sum of the
a—trimmed real and imaginary parts.

- 1

Ba K(1-2a) {
(1 - 7‘) [%[Brg-{-l + BTK-g] +
jg[Big-{-l + BiK-g]]
K 1

=

m=g+2

R[B;,.] + iS(B;,.] } )
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where g is the largest integer less than or equal to
aK, r = aK — g and the (k,!) has been dropped
for clarity. Eqn. 5 is a summation over the segments
identified by the middle K — 2g values of r and i (i.e.
[Tg+1, vy T’K__q] and [ig+1, ey iK_g]).

. Thisestimate s thus formed for all bifrequencies (&, [)
of interest.

This estimate is based on the absolute values of the real
and imaginary parts of the bispectrum estimates. It discards
the contributions to B of a fraction of segments. If « is
increased then the contributions from more segments will
be discarded. .

It is important to stress that the list of segments for which
bispectral values are discarded can be different at different
bifrequencies. This isintended to accommodate interference
such as bandlimited transients, which will affect the raw
bispectral estimates at some bifrequencies only.

Furthermore, the choice to apply the o-trimming al-
gorithm separately to the real and imaginary parts of the
bispectral estimate means that at any given bifrequency, the
segments from which the real part of the bispectral estimate
is discarded may be different from the segments from which
the imaginary part is discarded. The tacit assumption here is
that the real and imaginary parts of the segmental bispectral
estimates B, (k, {) are independent of each other. Although
this is asymptotically true (because the estimator is asymp-
totically complex normal[3]), it is not at this time clear how
valid this assumption is in practical situations.

2.1 Normalisation

Since the contributions to the bispectrum estimate from
the tails of the sampling distribution are excluded by the
a—trimming technique described above, the denominator
of the normalisation in Eqn. 2 also needs to be changed. In
order to try to preserve the magnitude of the bicoherence,
the following, slightly ad-hoc approach is taken at each
bifrequency. Since both real and imaginary parts are treated
in the same way, only the real part will be considered here.

o Form the vector r, which lists the segment numbers
associated with )[B,,,], ordered according to the size
of R[By,], as described above.

o The segments listed at the top and bottom of r
(e 71,.7rg,rK_g41,.TK) are excluded from the
a—trimmed estimate B,, (Eqn. 5).

o Halve the contributions of these outlying segments
(r1, .7y, ’K—g+1, ..Tk) to the estimates on the de-
nominator of Eqn. 3.

In this last step, the reason for halving, rather than exclud-
ing altogether, contributions to denominator estimates is
explained as follows. Consider one segment m in which




the raw estimates of the numerator and denominator of the
bicoherence are By, (k,1), Sm(k,!) and Py, (k + 1). Now
the contribution of segment m to the final bispectral estim-
ate will be zero only if both R[B,,, (k,1)] and (B, (k, 1)]
are extreme values (i.e. so both the real and the imaginary
parts are trimmed). Insuch circumstances it is desirable that
the contributions to S(k, ) and P(k + I) are also zero. If,
on the other hand, R[ B (k, )] is trimmed but (B, (k, )]
is not, then the segment 1 does contribute something to
the numerator estimate B, and so it should also contribute
something to the denominator estimates 2, and S,,.

Although this method seems to work well, it is not satis-
factory from a mathematical perspective, and finding a better
way of doing this is a topic of current research.

2.2 An efficient implementation

The algorithm presented above can be very memory con-
suming, since the raw bispectral estimate for every segment
has to be stored before the order statistics can be computed.
Since the trimming factor o is typically small (0 < a < 0.2)
a more efficient algorithm can be constructed by rewriting
theestimation equation; instead of a summation over the seg-
ments which are not in the distribution tails (as in Eqn. 5),
rewrite this as a summation over all segments followed by
a subtraction of the tail values. Using this implementa-
tion, only the 2g + 2 (real and imaginary) tail values need
to be stored, resulting in a large saving in memory needs.
However, the new implementation requires a local sort! on
each segment in turn.

The form for this algorithm becomes evident by writing

K g+1 K—g-1 K
m=1 m=1 m=g+2 m=K-~g
and subsituting for the summation Zﬁ;g;zl in Eqn. 5.
The estimate is then written as
. 1 K
By = —i—— { B
K(1-2a) =

r[R(B,,,. + Bri_, 1+
js‘[Big-H + B‘.K—g]]

> R[B.,]+9(B:,]

m=1

K
Y. R[B..]+iS(Bi,]

m=K-g+1

} . D

Four vectors R(EH), R(RH) T(LH) gnq I(RH) each store
g9 + 1 extreme values of the real and imaginary parts
of the raw estimates as m = 1,.K. For example,

! A simple bubble sort was used in the current work.
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RUEH) = [R{ED) RUIDIT stores the left-hand extreme
values (i.e. values in the left hand tail of the distribution
of R[B.(k,1)]). When B,,(k,!) is calculated for a new
segment m, R[B.(k,)] is placed as the (g + 2)th ele-
ment of RCH). A sort is carried out, so that R{*?) =

mins-1,.,g42 RS#H) and Rgf,’{) = MAX5-y,. 042 Rg‘H).

The value in R_ffjj) is discarded. When all K segments

have been processed in this way, these four vectors R(ZH),
REH) 1(LH) and 1(RH) will contain the quantities needed
to calulated the trimmed mean estimate from Eqn. 7.

Since « is typically about 0.05 this represents a storage
saving of roughly 80%? over the standard method of com-
puting the trimmed mean.

3 Results

We propose that the modified bicoherence, described
above, be used as a detector of Quadratic Phase Coup-
ling (QPC) in signal processing environments influenced
by background noise and transients.

In order to see how well this measure works in practice,
several simulation signals have been analysed. In common
with other simulations used to measure the performance
of the bicoherence as a QPC detector, the signal [m(n) =
(n)+v(n)]is modelled as the summation of an underlying
sinusoidal component [z(n)] and an additive disturbance
[v(n)]l. z(n) exhibits QPC, but this may be difficult to
detect with the ordinary bicoherence because of extraneous
noise,

The signal of length N is generated segment by segment
as follows ;

3
z(n) =Y cos2rfin + ¢;), ®

i=1

with f3 = fi + f> and ¢3 = ¢; + ¢». The phases ¢;, ¢»
are re-randomised U[0, 2r) in each frame (this satisfies the
Phase Randomisation Assumption which renders the bico-
herence magnitude suitable for QPC detection[2]).

In previous applications of the bicoherence [4, 1] v(n)
was white Gaussian noise. In this paper, v(n) = t(n)+g(n)
is a summation of randomly occurring short-lived transients
(modelled by damped sinusoids) and white Gaussian noise;

N,
v(n) = Zcos(27rhjn + 6;)e” " + g(n),

j=1
in which &, = U[0,0.5), 6; = U[0,27] .5 = UJ0, 1) and
g(n) is white Gaussian noise. The transients are triggered

randomly, with the probability of a transient beginning at
any one time sample is controlled by a paramter ~.

©

Zbased on an assumption that X' = 64, o = 0.05, g = 3, the saving is
1-(29+2)/K = 87%.

]
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Figure 1. Left: Time series of m(n). Right: Power
spectra of m(n) (signal plus noise) and z(n) (clean
signal no noise).

a | 44(02,0.1) | B(%) notes

0 0.82 1.7 standard method
0.05 0.82 32 | ~ 2 segments discarded
0.20 0.84 7.3 | ~ 6 segments discarded

Table 1. Performance measure of new technique.

Fig. 1 shows the time series of one example of the
noisy signal m(n) (N 1024, v 0.02, SNR=
10log;o02 /02 = 0dB), with f; = 0.1, f> = 0.2, together
with the Power Spectrum (Nprr = 64, K = 16) for both
the signal with no noise [z(n)], and the signal with the tran-
sient and steady state noise added [m(n) = z(n) + v(n)l.
Clearly the noise has a very detrimental effect on the power
spectrum, almost obscuring the spectral peaks. Fig. 2 shows
the squared bicoherence of m(n) with different levels of
a—trimming. The bicoherence should peak at (0.2,0.1)
(which is equivalent to (0.1, 0.2) because of symmetry). The
top plot = 0 corresponds to the ordinary squared bicoher-
ence estimate - the peak at (0.2, 0.1) is barely visible above
the noise floor. However, the o—trimmed estimates show
much lower noise floors.

The improvement in performance can be measured by
8 = 4%(0.2,0.1)/ 3", b%(k,1) x 100% - the percentage
of total bicoherence “energy” which occurs in the correct
bin®. Better QPC detectors will have higher values of 3.
Table 1 shows how this varies for a typical example of
this simulation. It is clear that the o—trimmed estimates
perform better as QPC detectors than the ordinary squared
bicoherence. Further simulation results will be shown at the
conference.

4 Discussion and Conclusions

The proposed QPC detector based on an a—trimmed
bispectral estimate appears to give reduced noise floors in
the simulations investigated so far, and peaks due to QPC are
easier to pick out using this detector than using the standard
bicoherence. In particular the new detector is robust to
interference from additive transients. The normalisation
scheme used in this paper appears to work successfully,

3 Z T denotes a summation over the Inner Triangle[3].
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Figure 2. Squared bicoherences of m(n). Top: Or-
dinary (standard approach). Middle: o = 0.05. Bot-
tom: o = 0.20.

although it does not have a rigorous mathematical basis.
The performance of the new estimator as a QPC detector for
other types of interference (such as Amplitude Modulation)
is a topic of current work, which will also be described at
the conference.
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Abstract

The work is addressed to provide realistic modelling of
generic noise probability density functions (pdfs), in order
to optimize signal _ detection jn__ non-Gaussian
environments. The target is to obtain a model depending
on few parameters (quick and easy to estimate), and so
general to be able to describe many kinds of noise (e.g.,
symmetric or asymmetric, with variable sharpness). To
this end, a_new HQS-based model is introduced, which
derives from the generalized Gaussian function and
depends on three parameters: kurtosis (fourth order), for
representing variable sharpness, and [eft and right
varignces (whose combination provides the same
information of skewness - third order) for describing
deviation from symmetry. The model is applied in the
design of a LOD test for detecting signals corrupted by
real underwater acoustic noise in a low-frequency range.

1. Introduction

Realistic and simple statistical modelling of generic
background noise is addressed in order to optimize signal
detection in non-Gaussian environments. Detection
purpose is to decide between the two hypotheses of the
presence (H;) or the absence (H;) of a transmitted
deterministic signal {s;, k=1, .., K} (the approach can be
extended to the stochastic case), on the basis of acquired
observations {y,, k=1, ., K} (application of binary
hypothesis testing) [1]; the noise, {n, k=1, ., K}
corrupting the signal during the propagation is assumed
additive, independent and identically distributed,
stationary, and generally non-Gaussian and unimodal.

The work main target is to design a detector
characterized by: (@) high performances in the case of
weak signals; (b) easy applicability to real cases (in
particular, easy and realistic estimation of needed
parameters, realistic noise modelling, and robustness to
variable boundary conditions); (¢) algorithmical
simplicity.

Detection optimization in the case of low/middle values
of the Signal-to-Noise Ratio (SNR) (in the range [-30,0]

0-8186-7576-4/96 $5.00 © 1996 IEEE

dB) (property (a)), is reached by selecting the Locally
Optimum Detector (LOD) [1] as statistical inference
approach.

For satisfying conditions (3) and (c), the investigation
is addressed to express generalized noise pdf models,
usually depending on parameters difficult to be estimated
from real data samples, in terms of Higher-Order-Statistics
(HOS) parameters [2], which are very easy and quick to be
extracted from data and are particularly suitable for
quantifying deviation from Gaussianity in terms of
asymmetry (with third-order parameters) and variable
sharpness (with fourth-order parameters).

As conventional signal processing algorithms based on
the Second Order Statistics, optimized in presence of
Gaussian noise, may decay in non-Gaussian noise, various
works used HOS theory [2] as signal-processing basis for
noise analysis and detection optimization; however, some
methods work only with non-Gaussian signals [3][4][5] or
only in Gaussian noise [5][6][7]; some can be applied only
under certain assumptions of noise distributions [8][9];
some are not optimized in the case of weak signals [3];
finally some algorithms are complicated [8].

In order to overcome at least some of the aforesaid
limitations and improve robustness, simplicity and
generality of HOS-based detectors, the parametric
asymmetric generalized Gaussian pdf model is introduced.
It derives from the combination of the well-known
generalized Gaussian pdf [10] and of the asymmetric
Gaussian model presented in [11].

The first model is symmetric and depends on a real
parameter, ¢, which is not easy to estimate from data.
Nevertheless, ¢ presents a physical meaning, as linked
with the pdf sharpness. The HOS parameter which better
describes sharpness variability is the fourth-order kurtosis,
B,. Hence the analytical relationship between ¢ and B, is
introduced (see [12] for details). The resulting symmetric
function based on kurtosis has the same characteristics of
the generalized Gaussian, and is a realistic noise-pdf
model for 1.865<p,<30.

In order to introduce into this variable-sharpness model
also possible deviation from symmetry, the resulting
kurtosis-based function is modified by taking into account




the asymmetric Gaussian model [11]. It directly derives
from the Gaussian shape, but is asymmetric and depends
on two second-order parameters, the left and right
variances [11]. By introducing these two parameters in the
kurtosis-based generalized ~Gaussian function, the
“"asymmetric generalized Gaussian" model can be
obtained.

The new model is compared with the generalized
Gaussian and the asymmetric Gaussian pdfs, which result
as its particular cases. It is applied in the design of a LOD
test, used for detecting deterministic signals corrupted by
real underwater acoustic noise radiated by ship traffic

[13].
2. The asymmetric generalized Gaussian pdf

In the context of noise modelling, one of the most
noticeable ways in which estimated noise distributions
deviate from Gaussianity is in kurtosis B, i.e., the ratio of
the fourth and the square of the second central moments. It
is equal to 3 in the Gaussian case; the sharpness of the pdf
shape is higher (lower) than the corresponding Gaussian
function as B, is larger (smaller) than 3. A good model for
general pdfs has variable sharpness.

One of the well-known symmetric pdf models is the
generalized Gaussian, which depends on the parameter c:

__
Pec(™ = 50070) M

where {n} is generic noise with mean value and variance

e—lv(n—u)lc

o2 y = { 1;(3/6) ’
cT(l/c)
¢ cannot be directly estimated from data samples; hence
the relationship between ¢ and B, was found [12]. It
derives from the B, definition and is expressed by the
following formula:

+00
T(k)= [e*x*ax,
0

- mi__ E{(n-w)'*} _T(5/c)L(1/¢c)
5P (Bn-np)f G/

3 @
c= C(Bz) ~ m —012 for 1865<B2$30

This formula allows one to express p, (1) in terms of
B, [12). Its validity is confirmed by oiserving that for
B,>3 the resulting pdf has heavy tails, as expected [10].

In order to generalize this model so that it can be also
asymmetric, the asymmetric Gaussian model presented in
[11] is taken into account. It depends on two second-order

parameters (deriving from the definition of variance),'(')'l2
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and 0',2., called respectively "left" and "right variances"
and estimated from finite sequences of the process {n}
according to the following formulas:

1 N 2
— 2 (P
k=1, ng<pu

2
O, and

Ny
> (m-w)’ ©

k=lLng>p

2 1
" N,-1

where Ny (N,) is the number of n; samples <p (>u). The
model expression follows:

Q

' (-
pog(n) =1 v2n(o;+0,)
aG _(-p)?
|V2r(o;+0,) =H

As well as the kurtosis-based generalized Gaussian
model, it is analytically simple and easy to be estimated if
some data sequences are available (the model includes the

Gaussian case for 0‘12 = 03 ). The left and right variances
are linked with the variance (the well-known second-order
parameter) and with the skewness (the third-order
parameter describing and quantifying pdf asymmetry) as
follows [11]:

o? =6} +62 -0/,
4 5
m§7=ﬁ1=E{(n—u)3}=-——————,—2n(cl+c )(—cf+cf) ©
r

(where E is the expectation value).

In a similar way, these two parameters are introduced
in the kurtosis-based generalized Gaussian pdf in order to
transform it into the following asymmetric generalized
Gaussian model:

NYa e—Y?[—(n—u)]‘ n<p

_Jraio
Pagc(n) a1l s 6)
T(1/c) =
where y = ! [r(3/c))""’ =i(1”(3/c) "
7 o;+0,\T'(1/c) o\ (1/¢)

I'(3/¢)
r{/c)

)l/ 2

2l
Yr ="
G,




It is easy to notice that if 0',2=0'f, then the pdf
coincides with the generalized Gaussian, hence it is

symmetric; if 0'12=03 and B,=3, then it coincides with
the Gaussian model. Figure 1 presents a family of the pdf
as B, varies.

Asymmetric Generalized Gaussian pdf family (varl=1, varr=2)
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Fig. 1. Asymmetric generalized Gaussian family
(n=0).

3. The LOD test designed on the basis of the
new model

The model is suitable for the design of a LOD test [1],
as the non-linearity g;,()) and the maximum asymptotic
relative efficiency p can be expressed in terms of
elementary functions. In particular:

210(y) = {“071[—()’ - y<p

o, (y-nf" yzp 0
2
cT(2-1/c +7v,
= Ya¢T( I“(l/c))(Y[ L )(c,2+cf—0'10',) ®)

The respective graphs are presented in Figs. 2 and 3.
From their analysis it is easy to conclude that the test
works better for values of the kurtosis larger than 3 (i.e.,
for super-Gaussian and, in particular, for impulsive noise
pdfs), as expected; nevertheless it can reach good
performances even in more critical conditions of sub-
Gaussian noise.

In order to deduce test performances from a theoretical
point of view, these graphs can be compared with similar
graphs for other well-known pdfs: for example, LOD non
linearities and maximum ARE curves computed in terms
of the c-based generalized Gaussian, the generalized
Cauchy, the generalized beta functions are presented in
[10], those expressed in terms of the asymmetric Gaussian

212

and the kurtosis-based generalized Gaussian pdfs are
shown in [12][14].

LO non-linearities for Asymmetric Generalized Gaussian noise
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MAX ARE for Asymmetric Generalized Gaussian noise
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Fig. 3. p graphs as 3, and cf varies.

4. Experimental results on real data

From an experimental point of view, the capability of
the proposed model of describing realistically generalized
noise pdfs was evaluated by applying it to the problem of
detecting known constant signals corrupted by underwater
acoustic ship-traffic-radiated noise [13]. The noise data
sequences were analysed and characterized at average by
the estimated parameters p=-17.5, f,=2.51, o/~ 1550 and
0,=1350 [13]. A comparison between noise histogram
(computed on 10 records of 10000 samples) and the new
pdf model estimated on the basis of the aforesaid second-
and fourth-order parameters can be deduced from Figs. 4
and 5: a good fitness between data and model is shown.
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The detection performances obtained by applying the
HOS-based model to a LOD test are presented by means
of experimental curves of the Detection Probability Pp as
SNR varies, given a certain value of the Probability of
False Alarm, Ppy. In the diagram of Fig. 6 't_he
performances obtained by using the new pdf model

(depending on the left and right variances and on the
kurtosis) are compared with those provided by an
asymmetric Gaussian model (depending only on the left
and right variances).

The performance improvement is mainly associated to the
capability of the new pdf to model non-Gaussian noise in
a more realistic way, so that it can be better filtered.
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Abstract

This paper considers the use of composite property map-
pings for MA cumulant matching. The algorithm makes use
of two property mappings corresponding to rank and struc-
ture properties of a matrix consisting of MA cumulants. It
is proved that these two properties are sufficient to charac-
terise a matrix consisting of true MA cumulants. This result
clearly implies that provided that convergence is achieved,
the composite property mapping algorithm performs some
kind of cumulant matching. The issue of convergence is also
discussed in the paper. Numerical results are presented to
show the performance of the algorithm. Keywords: Higher
Order Statistics, System Identification.

1 Introduction

Consider the following finite impulse response (FIR) sig-
nal model: z(t) = 3! h(i)w(t — i) where the system
input is assumed to be non-Gaussian, independent identi-
cally distributed (IID) , random process with £{w(t)} = 0,
E{w(t)w(t + n)} = B26(n), and E{w(t)w(t + ny)w(t +
n2)} = 738(n1,n;). We assume that h(0), h(q) £ 0. A
method for the enhancement of third order cumulants of MA
models was presented in [1]. That method is based on the
use of Composite Property Mapping Algorithms (CPMA)
[3]. The reader is referred to [3] for further information
on CPMA and to [5] for a general introduction to set the-
oretic estimation. Composite property mapping algorithms
have originally been used within a HOS framework in [4]
for blind array processing. This is a follow-up to the work
described in [1]. Some of the material presented here is also
included in [2].

2 Cumulant Enhancement

In the following we summarise the main steps involved
in the method of [1]:
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Figure 1. The cumulant matrix used in the CPMA al-
gorithm. It is assumed that c., 72 = €3,5(71, 7).

1. Collect the sample cumulants corresponding to the
minimal sufficient set of lags in the following vector:

8o = [63,2(0,0),85,4(0,1), 8,4(1, 1), ...,

¢3,2(0,9), -, 830(a — 1,9),83.(g,0)]". (1)

2. The elements of 670 are then used to build the matrix C,
depicted in figure 1 Cy is a (2¢+ 1) x (2¢ + 1) matrix.
The matrix C, contains all the third order cumulants in
the vector . It can be shown that a matrix C which re-
sults from matrix C, after replacing sample cumulants
with true MA cumulants, possesses the following two
theoretical properties:

(@) rank(C)=q+1

(b) The structural composition of C is determined by
a characteristic matrix A and we say that C is a
linear structured matrix. (More details in [1])

3. Weh perform the following iteration: (:3 Er1 =
F(Cr) = Fa(Fp41(Ch)) until 1 -7y (Cpyr) < e,
where ¢ is a predefined small positive number. The




mappings Fa , F,+1 and the quantity rq+1(Ck+1)

defined as follows:

corresponds to the
It is implemented
rank reduction)

(a) The mapping Fgi1
rank property of C.
using SVD (SVD-based

For1(X) Y4t opupvy . where
X € R(24+D)xQe+1) and X = qutl orugvy .

(b) The mapping Fa corresponds to the
linear-structure property of C: Fa(X)
T-1(A[ATA]'AT T(X)).

(c) Itispossible to get an idea of how close a matrix

X is to a ¢ + 1-rank matrix, by examining how
close the following quantity is to 1, provided that

Og+1 > Ogi2:
g+1
- 2ik=10k
re+1(X) = 20+1 @
k=1 Tk

CPMA for Cumulant Matching

In [1] this composite property mapping method was used
as a preprocessing step before applying some linear methods
for system identification. A question that rises naturally, is
whether a matrix that possesses both properties defined in
the previous section, contains true cumulants of some MA
model.

To start with we assume that the matrix sequence gener-
ated by the iterative algorithm described earlier converges
to a matrix S, which has both the desired structure and rank
properties. It is interesting to examine whether this matrix
consists of real cumulants of some MA model. Since the
matrix S has the same structural characteristics as those of
a matrix constructed of real cumulants , then if s; ; is a non-
zero element of S, we denote s; ; as s(71, 72), where (71, 72)
are the lags we associate with the 7, j-element of a struc-
turally equivalent matrix which is constructed from real cu-
mulants. Then because of the structure property, the same
symmetries that apply to lags of cumulants will apply to
these associated lags of s(r;, 72). In the following it is as-
sumed that s(0, ¢), s(¢,q) # 0. The following Lemma is
required:

Lemma 1 Suppose that we are givena (2g+1) x (2¢+1)
matrixS , which has the two prescribed properties (structure
and rank). Then the following equation holds for s(1,73):

S(j, n) = Z

=0

s(, g)s(i + 1, q)

5(0,9)s(¢, 9) ®

s(j+14,9)

forn=0,.q—landj=n—gq,..,q.
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The proof of this Lemma is given in the Appendix.
Since we know that s(0, ), s(g, ¢) # O wecanfindays # 0
such that

(i, q) = 35300 (@) (i,0)

5(0,0)5(0,) 5(0,9)°
If we combine equations (3) and (4), we obtain the follow-
ing:

=5, 9s(i+n,q)  s(0,q) s(g,9) s+ 4,9)
0= 200800 0.0 50,0 0

s(i,q) s(i+n,q)s(i+J,9)
_732 0,9) s(0,9) s(0,9) °

Equation (5) shows that s(j, n) is the third order cumulant of
an MA model with parameters k(i) = s(i, ¢)/s(0, ¢). Thus
the following theorem holds:

C

®

Theorem 1 Every (2q + 1) x (2¢ + 1) matrix S possess-
ing the structure and rank properties defined in this section,
consists of real cumulants of some MA(q) model.

The above theorem implies, that the cumulant enhancement
method summarised earlier, when it converges to a matrix
with the prescribed properties, performs some kind of cumu-
lant matching.

4 Convergence Properties

An important issue that needs to be addressed here is that
of convergence. Let us consider a matrix sequence gener-
ated acoording to the algorithmic rule,

Cr = F(Ci-1),

for £>1 6)

in which the initial matrix C; is the experimentally gener-
ated matrix Co. Then at every step, the matrix Cy, has the
right structure and is “nearer” to a matrix with rank ¢ + 1
than C;_;. In iterative mappings of this type, convergence
is guaranteed only when all property sets are convex [5].
However, in our case, it is obvious that the set of matrices
with rank ¢ + 1 is not convex, and this violates the assump-
tions required for Theorem (1) in [3]. In [7], Dologlou et al
provide an interesting theorem which shows that the norm
of the difference C;, — Cy1 and the distance between Cy,
and the set of matrices with rank less than or equal to g + 1
both converge to0 when k¥ — oo. The behavior predicted by
this theorem is verified by our numerical simulations (sum-
marised in figs.2 and 3). For system identification the fol-
lowing methods are used: The Least Squares method of [2]
(LS), the Closed Formula (CF) of {6] and a nonlinear method
for cumulant matching [8]. It has been observed though, that
for some MA models convergence in the sense described in
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Figure 2. The singular value ratio (2), the square er-
ror of the enhanced cumulants and the square error of
the estimated parameters as a function of number of
iterations. The dark curve represents the CF method
[6] and the light curve represents the LS method [2].

[7] can some times require thousands of iterations. Conse-
quently there are cases where practically we cannot achieve
convergence. In these cases, the algorithm can still be used
for preprocessing the cumulants as proposed in [1]. Since
convergence can sometimes be difficult to achieve, com-
posite mapping algorithms cannot replace existing nonlinear
methods for cumulant matching. The drawback of nonlinear
cumulant matching methods is that there is always a danger
of becoming trapped in a local minimum. However, in order
to avoid this occurrence, good initial conditions are required
and these are usually provided by linear methods. Because
cumulant matching does not require any initial conditions,
it can be applied’ prior to linear methods in order to provide
improved initial conditions for the nonlinear methods.
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APPENDIX

Proof of Lemma 1: The vectors correspondingto the first g+ 1
rows of the matrix S are denoted as sg where d = 0, ..., ¢ and the
vectors corresponding to the last ¢ rows of the matrix are denoted
by sq—1,...,80. I we assume that s(0, ¢), s(g,¢) # 0, then it is
evident from their structure, that the q + 1 vectors sg Ad=0,..q
are linearly independent. Given that the rank of the matrix is ¢ +1,
we can conclude that the vectors corresponding to the last ¢ rows
of the matrix, belong to the space spanned by the first g + 1 rows.
In particular since the last » elements of the vector s, (n = ¢ —
1,...,0) are zero, it can easily be seen that they belong to the space
spanned only by s% for d = 0,...,¢ — n. We can write this as




follows:

sn € span{sy,...,sI™"} n=g-1,..,0. )

Now if we take n = ¢ — 1, it is straight forward to prove that ,

_ 5(1: q) 0

s(a—1,9) a
8q-1 = 50, 0) Sq Sq- )

s(q,9)

In scalar form, this translates to,

1

sGra—1) =)

3(i,9)s(t +g—1)
s(g,9)s(0, q)

jg=-1,..

s(5+14,9)

Y &)
s0 equation (3) holdsforn = ¢ — 1.

Assumption 1: Let us supposethat equation (3) holds for every
n suchthatq—1 > n > k, for some k > 0.
We want to prove that it also holdsfor n = k — 1.

(10)

Because of the cumulant like symmetries in the lags of s(k — ¢ —
1,k — 1), the first element of sx_1 is s(k —g— 1,k ~1) = s(g—
k+1,q). It is related with s(0, ) as follows:

s(g—k+1,9) = Ae-1,05(0,9)- (11)

From equation (11) we can obtain the value of Ax—1,0 = s(g —
k+1,9)/5(0,9). Since s(k —g — 1,k ~1) = (s{¢g —k +
1,9)/5(0, ¢))s(0, ), equation (3) holds forn = k — 1 andj =
k—g-—1.

Assumption 2: Suppose that equation (3) holds forn =k —1
andk —gqg—1< j <mwherem < —2.
In other words we assume that we know that

g—-k+1
= s(t,q)sG+k—1,q) ,. .
s(m,k—1) = .-; O LTmO=
g—k+1
Z Ak—1,g—k+1—i8(1 + m,q). (12)

‘We want to obtain the value of Ax—1,m—k+q¢+2 and use this to
show that equation (3} is valid forn = k — land j = m + 1. So,

q—k+1

ﬂm+Lk—1ﬁ=§:

s(i) Q)s(i +k-1, q)
s(0,9)s(g, 9)

+(Ak—1,m—k+q+2)5(0, q),

s(t+m+1,q)

(13)

buts(m+1,k-1) = s(—m—1,k—m~2),wherek—m—2 > k.
Then according to Assumption 1 we have,
s(m+1L,k—1)=s(-m—1,k—m—2)
qg—k+m+2

2

;=0

s(f,)s(j+k—m—2
5(0,9)s(g, 9)

’q)s(j —m—1,q).
(14)

217

Consequently, the previous equation can now be rewritten as fol-
lows,

s(m+1,k-1)=
q—k+m+2 R .
s(i,q)s(f+k-—m—2,¢) .
X T oy 0T
5(0,9)s(k —m —2,q) s(=m—1,q). 15)

5(0,9)s(g, 9)

If we make the transformation § = ¢ + m -+ 1 in equation (15) we
obtain ,

g—k+1 . .
B s(i+m+1,q)s(i+k-1,q) .
“m+Lk-D_ﬂ§; s(0,9)s(q, 9) )
sQ@sk-m=20 .4 (16)

5(0,9)s(g, 9)

Now observe that the summationsin equations (16) and (13) are
equal, thus we can deduce that

s{k—m—2,q)s(-m—1,¢q)
$(0,9)s(g, ¢) ’

and consequently equation (13) can be rewritten as

Ak—1,m—ktgt2 =

s(m+1,k—1)=
q—k+1 . )
s(,)s(i+k=1,q) .
ﬁgi_ s SCTmTLo an

Equation (17) demonstrates that equation (3) is valid for 7 = m+1
andn = k— 1. Now, knowing that the initial equation correspond-
ington k—1andj k — q — 1 holds, we have demon-
strated that we can prove equation (3) tobe valid forn = &k — 1
andk — g — 1 < j < —1. From expression (7) we know that,

(18

We havealready obtained the values of Ax—1,0 t0 Ax—1,4—x, but we
stilineedto find Ax—1,q—x+1. Thisis easilyobtained if we consider
the following expression for the last non-identically zero element
of sp—i:

s(g, k — 1) = Mk—1,g-k+18(q, 9), (19)
k—1
Ak—1,g—kt1 = S—(ij—l (20)

Since we know all the X\’s in (18), we can now write (18) in scalar
form:

g—k+1

%

1=

s(i,q)s(i+k—1,q)
5(0,9)s(g, 9)

s(j,k—1) = s(i+s,0) @D

where j=k-1-q,...,q. Given that equation (3) is valid forn = ¢ — 1
we have shown that it is valid for every n suchthatg—1 > n > 0.
| |
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Abstract

The problem of estimating the parameters of a non causal
ARMA system, driven by an unknown input noise with un-
known probability density function (PDF) is addressed. A
maximum likelihood approach is proposed in this paper. The
main idea of our approach is that the assumed PDF of the
input noise is the PDF minimizing the Fisher information
(FI) among PDFs matching the estimated cumulants up to
4th order. This minimization problem is hard to solve, so we
use an over-parameterized PDF model, which is a gaussian
mixture, and minimize the FI in this set. A new parame-
ter estimation method is given and its robustness properties
are detdiled. The performances of the resulting identifica-
tion scheme are compared to those of another higher order
method.

1. Introduction

The identification of the parameters of a discrete linear
shift-invariant system by observation of its output is of con-
siderable interest in time series and spectral analysis, filter-
ing and prediction. In non gaussian case, numerous methods
based on higher order statistics (HOS) have been introduced
due to the fact that the output of these systems carries phase
information. Their main disadvantage is that they do not
provide any information about the theoretical performances
of the estimator and its optimality in the sense of the covari-
ance matrix of the estimated parameters.

To obtain an optimal estimator, it is necessary to know the
exact probability density function (PDF) of the input noise
in order to calculate the maximum likelihood (ML) estima-
tor. If the PDF is unknown, we can assume a certain class
of PDFs for the input and obtain the optimality in the min-
imax sense by using a ML approach with the PDF which
minimizes the Fisher information (FT) in this class and pro-
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vides the most robust (in Huber’s sense) {3, 6] parameter
estimates.

In connection with higher order statistics, we consider
the class of cumulants constrained PDFs and determine the
PDF which minimizes the FI under cumulant constraints.
This optimization problem was partially solved in [9] but the
results are limited to the symmetrical sub-gaussian PDFs.
So this problem is always open for super-gaussian and non
symmetrical PDFs,

In this paper, we propose a new parameter estimation
method based on the prediction error method (PEM) using
cumulants of second, third and fourth order and the mini-
mization of the FI. We use a mode! of PDF, appropriate for
non gaussian processes with heavy tails, which is a gaussian
mixture (GM) PDF:

fu@) =p@i(w)+ 1 —p)Po(u), 0<p<1 (1)

where ®; (v) and @, (u) are Gaussian PDFs. We consider the
case of a non symmetrical PDF (see the symmetrical case in
[4]) constrained by the second, third and fourth order cumu-
lants, used in practice.

In section 2, we present the procedure for the determi-
nation of the set of centered GM PDFs having the same
variance, skewness and kurtosis (second, third and fourth
order cumulants), and the element of this set minimizing
the FI. This solution is given analytically for the null skew-
ness case. In section 3, the proposed parameter estimation
scheme is explained and the robustness properties of our es-
timator are given. The estimation algorithm and simulation
results are presented in section 4. In section 5, a conclusion
is given.

2. Model for the input PDF
Here we introduce the cumulant matched GM as the

model for the input distribution. Despite the fact that it does
not result from any constrained mini- or maximization of




PDF measure, it has very useful characteristics and interest-
ing properties (see [4]).

So, let C,, Cs and Cy, respectively the variance, the
skewness and the kurtosis of any PDF (C, > 0, Ca >
C%/C, —2C%). We will show that there exists always a non
empty set Fis of centered GMs (1) having these cumulants.
The problem is which mixture to choose in this set, when it
contains more than one element, as model for the input PDF.
So we decide to take the mixture model of Fjs minimizing
the FI, i.e.

= i 2
fig = ag min Iy @
where I; is the FI defined as
oo 12
I = / ) 3)
- [
With the GM, this integral can be evaluated only numeri-

cally.

Consider m;, my and V;, V3, respectively the means and
variances of ®;(u) and ®,(u) in the GM given by (1). To
obtain a centered GM with given variance Cs, skewness C3
and kurtosis Cs, we must have:

pmy+(1—pymy = (a)

p(Vi +md)+ (1 - P)(Vz +md)=Cy ®
(Vi +m) + (1 —pmB3Va+m)=Cs () @)
p(3V2 + 6m2V1 + m1)+

a- p)(3V2 +6m3Va +mj) — 3C2 =C4 (d)

We can see that if p = 0 or p = 1, the PDF fy(u) (1) is
Gaussian with variance C, and it is possible only if C3 =
Cs=0. S0,if C3 #00r Cs #F0thenO0O<p< 1.

Now, the problem is to determine the set of solutions of
the system (4). To do this, we use a new parameterization:

my = —kp

where k is real. So, the relation (4a) is always verified and
m, and m; can take all values.

For convenience, we consider now that k # 0. k = 0 case
will be precised later. Then in using (4b) and (4c), we get
the formula of the variances V; and V; in function of p and
k:

2
Co+ _Hah (g

Vi
{VZ’CZ 3k(1 -~ k 7 (B

Next, by replacing (6) in (4b), (4¢), (4d) and by combination
of these, we obtain the equation linking p and k:

p(1 - (@ — p+ Dk +p(1 — p)(4p — 2)><
Cak? + 3p(1 - P)Cuk?> — G =0

©

Q)

This equation is analytically solvable only if C3 = 0 and k ¥
0, so if C4 < 0. In the general case, we solve numerically
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(7) in order to determine the pairs (p, k), with0 < p < 1and
k # 0, solutions of (7). We can remark immediately that, if
the pair (p, k) is solution of (7), then the pair (1—p, —k) too.
And the two resulting mixtures are identical.

If k = 0, then we cover the class of symmetrical super-
gaussian PDFs studied in [4]. So, it ensues the following
proposition:

Proposition 1: Let Cy, Cs and Cy, respectively the vari-
ance, the skewness and the kurtosis of any PDF. Then there
exists a non empty set Fias of centered GMs having these
cumulants. We have to distinguish three cases:

(i) C3 # 0: then F is characterized by the pairs (p, k),
where 0 < p < 1and k > 0, solutions of the equation
(7) and for which the variances V; and V; of the two Gaus-
sian PDFs of the mixture are non negative, m; and m; being
given by (5). Fi is noted GMp k.

(i) C3 = 0 and Cy < 0: then k ¥ 0. Fyy is characterized
by the pairs (pi, k) and (1 — p1, k), where

1 / 6C4
p1=§— -14+2 l+'k—4 (8)

and (—8C )} <k < /% tohave 0 < py < 1and Vi
1

and 1, non negative. Fyy is noted SBG M.
(iii) C3 = 0 and Cy > O (super-gaussian): then k = 0.
Fyy is characterized by

m1=m2=0

=G -/ 3C2
Cz + _‘1; 934 Vo €10,/ 2] &)
P=fa
Fyr is noted SGM..

Remark 1: For the cases (¢) and (i), we show easily that
in the boundary case Cy4 = C3/Cz — 2C2, the sets GMp
and SBGM;, contain an unique PDF which corresponds to
the Bernoulli distribution.

Now the determination of the PDF f3; (2) of Fys which
minimizes the FI leads to the following results:

Proposition 2: The GM of SBGM; minimizing the
Fisher information (3) is f%,, where Fay = SBGM;, in (2),
with

my = —my = (£}
=Vz=Cz-—1/:g-* (10
p=3 i

It is quite natural that the solution be the symmetrical
PDF (sub-gaussian PDFs class) of the set SG M} because
it is the more Gaussian of this set (all its cumulants of odd
order are null) in the sense that the minimum value of the
FI, for any PDF, is reached for the Gaussian PDF [7].

Proposition 3: The mixture PDF model of SG M, mini-
mizing I;,, is obtained for « — 0 and then CIy,, — 1.




Due to the Proposition 3, it seems that the model of
Proposition 1 (i¢7), when o tends to 0 but is not 0, is an
e-approximation of the solution of the FI minimization un-
der constraints of C; and C; for the class of super-gaussian
PDFs since the absolute minimum of C, I is 1, obtained for
the Gaussian PDF. In practice, « is taken small enough (see

[3D.
3. ARMA parameters estimation

Let the observed process {y: } be modeled as the output
of a discrete stable linear shift-invariant system Hy,(2) with

input {e; }:

Y = Hoy(2)e; (11)

where

ARCETY) _ Qi @iz )G ¢i7)
B(:)D(z"Y) ~ (ig biz= )05 diz)

Wi[hao=bo=60=do=land

Hy,(2) = (12)

(13)

We assume that all the roots of A(z) and B(z) are inside the
unit-circle (causal minimum phase part) and all the roots of
C(z) and D(z) are outside the unit-circle (anti-causal max-
imum phase part). The input {e,} is an independent identi-
cally distributed (i.i.d.) sequence with unknown PDF f, (u).

Given N consecutive samples of the system output y;,
t=1,...,N, we want to estimate the actual parameter 6.
The prediction error sequence {w;(6)} [5, 7] is related to the
data through

90= [a1...anA bl...an Cl...Cne dl...an]T

wi(0) = Hy ' (2w

With PEMs, the estimate 8 of 6, is equal to 8 which mini-
mizes some criterion depending on the sequence of predic-
tion errors

(14)

N
1
TO =+ lef(wt(a» (15)
where #(.) is a scalar-valued norm, i.e.
8 =arg min J(9) (16)

Like f.(u) is unknown, there are two possibilities: either
choosing a norm giving satisfying results for a broad class
of input PDFs (robustification), or estimating f, (x) from the
available data. Qur approach is nearest of the robust iden-
tification in the sense where we take the PDF f3, (2) of the
class Fys, which is GM,, . or SBGM;, or SGM,,, depend-
ing on the values of the second, third and fourth order cu-
mulants of the PDF f, (u) for the choice of this class. The
criterion to minimize is J(f) with the norm £(w) = £(w) =
— log[f% (w)] (ML approach).

220

In Huber’s sense [3, 6], if the true PDF f, belongs to
the class Fir, we obtain the most robust estimator (16) of
the estimator class generated by Fjs with the norm £).
It is possible to show that the proposed estimator 8 (16) is
asymptotically optimal in the minimax sense for the partic-
ular class of PDFs Fjs. Under some assumptions (see [7]),
the estimate (16) is consistent and the following expressions
hold

{ VNG -6 ~ NOVE.f) @ g
VI, f) < VE, =V @)
On the other hand, we find that
cov(@ — 6) > N~'v* (18)

Thus, for f. = fy, the asymptotic covariance V (£, f.)
of the proposed estimate (16) reaches the lower possible
boundary V*, which depends on the FI of £, and on 6. Its
calculus is detailed in [7]. For other f. € Fjy, the asymp-
totic covariance does not exceed V*. If f. ¢ Fjs, only the
relation (17a) holds. In all the cases, V (€0, f.) is obtained
theoretically with the results of [7] and [5].

4. Algorithm and simulation results

Each step of the algorithm consists of the three parts:

1) Estimate the cumulants of the prediction error process
Wy (14).

2) Calculate the model fl?,, for the input PDF by (2),
based on the estimated cumulants of w;. Following the val-
ues of these cumulants, we choose between the numerical
procedure given in Proposition 1 and the models (10) or (9)
for the calculus of f3,.

3) Find the minimum of the criterion (15) (with {(w) =
£(w)) in the search direction of a quasi-Newton algorithm,
calculated with the input model fJ,. This calculus is not
detailed here but it is similar to the one presented in [7].

In the initialization phase of our ML approach, any 4th-
order methods can be used, for example, the W -slice algo-
rithm [8], to avoid convergence to false local minima.

To demonstrate the asymptotic efficiency of our ML
approach, we made many simulations with a non-causal
ARMA model driven by different symmetrical (belonging
to sub- or super-gaussian class of PDFs) or non symmetri-
cal input noises. We took a model in [2] and inversed its
causal real pole to obtain our non-causal model. It has poles
at 5 and 0.6179 & j0.5077 and zeros at —0.7 and 2, so with
transfer function given by:

(1+0.7271).(1 - 0.52)
(1-1.23582-1+0.63962-2).(1 — 0.22)

The algorithm was tested by simulation on the presented
model considered as unknown and driven by three differ-

H(z)=




Table 1. ARMA parameter estimates (N=2000,

100 Monte-Carlo runs).
Input True ML LS+max{K]|
parameter ean | Std Mean | Std
a3=0.7000 0.7018 | 0.0246 0.7003 | 0.0267
by=-1.2358 || -1.2243 | 0.0295 || -1.2266 | 0.0412
I b=0.6396 0.6329 | 0.0270 0.6358 | 0.0436
¢1=-0.5000 || -0.4756 | 0.1329 || -0.4838 | O. 1485
dy=-0.2000 || -0.1865 | 0.1525 || -0.1969 0.1687
a3=0.7000 0.7046 | 0.0231 0.6996 | 0.0255
b;=-1.2358 || -1.2299 | 0.0306 || -1.2267 0.0408
I b2=0.6396 0.6337 | 0.0276 0.6356 | 0.0448
¢1=-0.5000 || -0.4846 | 0.1308 || -0.4932 0.1361
d1=-0.2000 || -0.1862 | 0.1443 || -0.2061 0.1585
a1=0.7000 0.7002 { 0.0136 0.7038 | 0.0266
by=-1.2358 || -1.2336 | 0.0162 || -1.2262 | 0.0440
m b2=0.6396 0.6369 | 0.0175 0.6360 | 0.0430
€1=-0.5000 || -0.4998 | 0.0560 || -0.4839 | 0.1514
dy=-0.2000 || -0.2030 | 0.0624 || -0.1934 | 0.1719

ent i.i.d. input noises: laplacian (I)(super-gaussian), uni-
form (IT)(sub-gaussian) or exponential (II). 100 indepen-
dant Monte-Carlo runs were performed for each simulation.
The signal’s length used is N = 2000 samples. We com-
pared this results with a method [1] (noted LS+max|K D,
where the spectrally equivalent minimum phase system is
primarily identified using least squares method (LS). Then,
among all the spectrally equivalent systems, we choose the
model which maximizes the absolute value of the estimated
normalized kurtosis of the innovation process.

~ In Table 1, the mean and the standard deviation (Std)
of the parameter estimates are summarized for the differ-
ent input noises. The presented results show the good be-
haviour of our method compare to the LS+max| K| method
with smaller bias and Std.

5. Conclusion

A possible way to obtain an efficient parameter estimates
in case of unknown non gaussian input is presented. The in-
novation of the proposed PDF model is that it is the element,
minimizing the FI, of a set of GMs having the same four first
cumulants than the true input PDF. This PDF model is pa-
rameterized by its second and fourth order cumulants for the
classes of null skewness PDFs, and determined numerically
for the non zero skewness PDFs class. An interesting result
has been obtained in the super-gaussian case for which the
PDF model (9) seems to be an e-approximation of the solu-
tion of the more general problem of FI minimization under
constraints of C and Cj.

Simulation results seem to confirm the good behaviour
and robustness of our method compared to other methods
based on higher-order statistics. Future works will address
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means to find the analytical form of the PDF f3; in the case
of non symmetrical PDF.,
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Minimum Entropy Filtering for Improving
Nonstationary Sonar Signal Classification
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Abstract

The Minimum Entropy Method is studied with regard
to its performance in removing multipath distortion from
passive transients, to improve the performance of
classifiers. It was found that the method often works well
if the kurtosis of the associated multipath Green's function
is high enough, and that signal stationarity is not required.
We also found that, while there are usually a few filter
lengths at which the best solutions are obtained with
conventional convergence criteria, good solutions exist
across a much broader range of filter lengths if the
iterations are not allowed to proceed to convergence. That
is, kurtosis needs to be increased, but not maximized. In
many cases, two or three iterations is sufficient.

1. Introduction

The passive sonar classification problem can be
decomposed into two stages: 1) recovering the source time
signature of a transient event from a set of received
signals by accounting for environmental distortion effects,
and 2) applying a pattern recognition algorithm to the
estimated source signature for final classification. By
environmental distortion, we refer to effects present in the
received data at the sensor array that are not present in the
source signature. In our case, environmental effects consist
primarily of multipath and low level ambient noise. For a
spatial point source, if we incorporate the environmental
effects into a Green's function, and assume time-
invariance, the received pressure time series at a desired
location can be modeled as the convolution of the transient
source signature with the Green's function. A term
representing additive noise effects can be added to the
convolution. The Green's function, of course, depends on
the environmental acoustic parameters and the source and
receiver location.

When a Green's function has been determined by
numerical solution of the wave equation, it can be used to
deconvolve the measured time series for an estimate of the
source signature, which is referred to as the deterministic
approach. Broadhead et al. [1] reviewed this approach, and
performed an additional study in a bottom-limited
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propagation environment, showing that there was extreme
sensitivity to inaccuracy in the bottom geoacoustic
parameters.

Broadhead [2] used a statistical source estimation
approach to address the problem of recovering a source
signature without specific knowledge of its location, or the
environmental parameters necessary to accurately compute
the Green's functions. He gave examples, for the single
channel case, where this can be done if the Green's
functions representing environmental distortion are lepto-
kurtic (a specific type of non-Gaussianity). The method
used, called the minimum entropy deconvolution method
(MED), was introduced by Wiggins in 1977 [3]. This
method was further refined and interpreted by various
researchers (see bibliography in Ref. [4]). The goal of this
method is to produce a filter that drives the output of the
system to lower entropy (greater order), or equivalently,
drive the governing distribution more towards non-
Gaussianity (higher kurtosis). The success of MED
depends on the non-Gaussianity of the input random
process, but apparently does not require stationarity
(examples are given in [2]).

In this paper we continue the work begun in [2] with a
more thorough and systematic exploration of the solution
space provided by the MED parametric method. The results
in this paper show that exploitation of higher order
parametric methods to achieve classification performance
gains for nonstationary sonar signals appears promising.

2. MED Algorithm

The MED algorithm has been thoroughly described in
the literature, and will not be repeated here, but a
minimum of terminology must be defined. We seek the
MED filter f of length N that is a stationary point of the
functional

)2

~4 "2
=33t (3

éj =§f1xj_1 s

M

where

@




¢ is the Green's function estimate, x is the input signal
and V is the Varimax norm (essentially kurtosis). The
resulting nonlinear system of equations is solved
iteratively. A starting point is given by taking f as a
delta function. After iterating to some stopping criterion
(to be discussed), we are left with the filter f and the
Green's function estimate . To obtain an estimate of the
source signature §, we calculate the inverse of f.

1.0 t.5 2.0
TIME (s)

0.0 0.5

Fig. 1. Signal type examples for the 4300 m
range. (a) Data, (b) PE Green's function, (c)
Short pulse simulation, (d) Long pulse
simulation.

3. Signal Description

We have three types of input signals: 1) data, 2) short
pulse simulations (SPSIMUL), and 3) long pulse
simulations (LPSIMUL). The data analyzed was obtained
in an experiment conducted in the Atlantic Ocean, in the
vicinity of Blake Plateau. For details, refer to Refs. [1],
[2], and [5]. A typical time series is shown in Fig. 1 (a)
(250 m receiver depth, 4.3 km source-to-receiver range).
The bottom interacting events occur after about 0.4
seconds.

In Fig. 1(b) we show the corresponding calculated (PE
model) Green's function. We used this and the two pulses
shown in Fig. 2 to create (by convolution) two types of
simulations: 1) a short simulation representative of the
data, as shown in Fig. 1(c), and 2) a long pulse
simulation, shown in Fig. 1(d), that creates more overlap
between the various arrivals. We have displayed only the
4.3 km range, but have also processed the 600 meter and
7.9 km ranges. Refer again to the above references for
more examples of time series.
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In Fig. 2, as mentioned, we display the two pulse
types. In 2(a), the short pulse is our best estimate from
measurements from a source array mounted hydrophone of
the true source pulse on the data. The longer pulse in 2(b)
is an exponentially damped sinusoid.

1.01 ]
W ~ a)l
g 051 T
Lot
. )
S oopww ]
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~-0.5L . . . . ]
0.0 0.2 0.4 0.6 0.8 1.0
1.0
b 0.5:
2 i
= 0.0f
L |
<€ —‘0.5:— 4
-1.0t . . , ]
0.0 0.2 0.4 0.6 0.8 1.0

TIME (s)
Fig. 2. Source types.

4. Processing Methodology

We developed two basic processing methodologies,
which will be referred to as CONVRG and BEST.
CONVRG uses a conventional convergence criterion, and
the output is a correlation coefficient between the source
estimate and the known source at each filter length from |
to 50. (The correlation coefficient, given by the symbol y
is standard except that we always report it as the absolute
value). The convergence criterion was as follows: the
correlation coefficient is calculated between the current
MED filter iterate and the previous. When this value
exceeds the specified tolerance, the iteration is stopped. We
used a tolerance level of 0.9999.

- ‘Jf\l—_—\"\_*;

0.8}

0.6} .

0.4}

0.2

CORRELATION COEFFIiCIENT

O-o [ 1 1.4 . | s A AL,

10 20 30 40 50
FILTER LENGTH

Fig. 3. Results for LPSIMUL, 600 m case.




We mimic the case of doing no preprocessing before
classification, that is, just correlating the received signal
with the source signature. This value gives a measure of
how much distortion was introduced by the multipath, and
will be indicated by short dashes in the figures. The output
of CONVRG will be indicated by a solid curve.

1'0- ¥ T T T

0.8}
0.6
0.4}

0.2}

CORRELATION COEFFICIENT

0.0. Ak, I Lo 1 Akt L
60E T T T T

50
40§

308

NUMBER OF ITERATIONS

50

FILTER LENGTH

Fig. 4. (a) CONVRG/BEST (Solid/Dash)
results for SPSIMUL, 7900 meter case. (b)
Number of iterations for results in (a).

BEST outputs the correlation coefficient between the
best possible source estimate and the known signature at
each N out of a possible itermax iterations, without regard
to actually trying to maximize V. itermax was variously
either 30 or 40 iterations. This curve will be represented
by long dashes in the figures. In both cases, the number of
iterations actually performed at each filter length. and the
estimated Green's function kurtosis were also output.

There were two stages in both algorithms where some
regularization could be required: 1) on a given iteration, the
Toeplitz coefficient matrix, which may become ill-
conditioned, and 2) the calculation of the inverse of the
MED filter, which may have spectral zeros (a frequency
domain method was used). The data and SPSIMUL cases
used a pre-whitening value of 0.01% for stage 1). The
4300 m range of LPSIMUL also used this value. No pre-
whitening was used for the other two ranges. In no case
was pre-whitening used for the inverse filter. A definite
sensitivity to the amount of pre-whitening was noticed.
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5. Results

In Table I we summarize the results in the form of
correlation coefficients between the estimated and known
pulses. For the different signal type and processing
methodology combinations, only the highest coefficient

Range (m) | 600 4300 7900
DATA/ 0.896 0.802 0.822
CONVRG

DATA/ 0.902 0.865 0.858
BEST

SPSIMUL/ 0.975 0.946 0.864
CONVRG

SPSIMUL/ 0.975 0.958 0.893
BEST

LPSIMULY 0.995 0.963 0.992
CONVRG

LPSIMULY 0.995 0.965 0.993
BEST

TABLE 1 Summary of highest correlation
coefficients for all cases.

obtained is reported in each case. In most cases the highest
coefficient obtained for BEST and CONVRG were
comparable. They were significantly different at other filter
lengths, for some cases, however, which we will discuss
later. LPSIMUL results were typically better than
SPSIMUL. We will speculate as to why, also later.

In all cases. the best results were a significant
improvement over doing no preprocessing of this kind,
where the ¥'s then are less than 0.7. As would be expected